TPTP Problem File: SYN433+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN433+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=20, K=3, D=1, P=0, Index=036
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-20-3-1-036.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v4.1.0, 0.17 v4.0.1, 0.00 v3.1.0, 0.17 v2.6.0, 0.00 v2.4.0, 0.33 v2.3.0, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 289 ( 0 equ)
% Maximal formula atoms : 289 ( 289 avg)
% Number of connectives : 394 ( 106 ~; 132 |; 123 &)
% ( 0 <=>; 33 =>; 0 <=; 0 <~>)
% Maximal formula depth : 54 ( 54 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 31 ( 31 usr; 27 prp; 0-1 aty)
% Number of functors : 26 ( 26 usr; 26 con; 0-0 aty)
% Number of variables : 33 ( 33 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& c1_1(a197)
& ~ c3_1(a197)
& ~ c0_1(a197) ) )
& ( ~ hskp1
| ( ndr1_0
& c3_1(a198)
& c0_1(a198)
& ~ c1_1(a198) ) )
& ( ~ hskp2
| ( ndr1_0
& c2_1(a202)
& c0_1(a202)
& ~ c3_1(a202) ) )
& ( ~ hskp3
| ( ndr1_0
& ~ c2_1(a205)
& c0_1(a205)
& ~ c1_1(a205) ) )
& ( ~ hskp4
| ( ndr1_0
& c0_1(a207)
& ~ c3_1(a207)
& ~ c1_1(a207) ) )
& ( ~ hskp5
| ( ndr1_0
& ~ c3_1(a210)
& ~ c2_1(a210)
& ~ c1_1(a210) ) )
& ( ~ hskp6
| ( ndr1_0
& c2_1(a211)
& ~ c3_1(a211)
& ~ c0_1(a211) ) )
& ( ~ hskp7
| ( ndr1_0
& c1_1(a212)
& ~ c0_1(a212)
& ~ c3_1(a212) ) )
& ( ~ hskp8
| ( ndr1_0
& ~ c3_1(a213)
& c2_1(a213)
& ~ c0_1(a213) ) )
& ( ~ hskp9
| ( ndr1_0
& ~ c2_1(a215)
& ~ c1_1(a215)
& ~ c0_1(a215) ) )
& ( ~ hskp10
| ( ndr1_0
& ~ c3_1(a217)
& c0_1(a217)
& ~ c1_1(a217) ) )
& ( ~ hskp11
| ( ndr1_0
& ~ c1_1(a221)
& ~ c2_1(a221)
& ~ c3_1(a221) ) )
& ( ~ hskp12
| ( ndr1_0
& c3_1(a222)
& c0_1(a222)
& ~ c2_1(a222) ) )
& ( ~ hskp13
| ( ndr1_0
& ~ c2_1(a196)
& ~ c0_1(a196)
& c3_1(a196) ) )
& ( ~ hskp14
| ( ndr1_0
& ~ c2_1(a199)
& c0_1(a199)
& c3_1(a199) ) )
& ( ~ hskp15
| ( ndr1_0
& ~ c0_1(a200)
& c2_1(a200)
& c3_1(a200) ) )
& ( ~ hskp16
| ( ndr1_0
& c3_1(a203)
& ~ c1_1(a203)
& c0_1(a203) ) )
& ( ~ hskp17
| ( ndr1_0
& c2_1(a204)
& ~ c0_1(a204)
& c3_1(a204) ) )
& ( ~ hskp18
| ( ndr1_0
& c1_1(a206)
& c3_1(a206)
& c0_1(a206) ) )
& ( ~ hskp19
| ( ndr1_0
& c2_1(a208)
& c0_1(a208)
& c1_1(a208) ) )
& ( ~ hskp20
| ( ndr1_0
& c0_1(a209)
& ~ c2_1(a209)
& c1_1(a209) ) )
& ( ~ hskp21
| ( ndr1_0
& c2_1(a214)
& ~ c3_1(a214)
& c0_1(a214) ) )
& ( ~ hskp22
| ( ndr1_0
& c2_1(a216)
& c3_1(a216)
& c0_1(a216) ) )
& ( ~ hskp23
| ( ndr1_0
& c2_1(a218)
& c0_1(a218)
& c3_1(a218) ) )
& ( ~ hskp24
| ( ndr1_0
& c2_1(a219)
& c1_1(a219)
& c0_1(a219) ) )
& ( ~ hskp25
| ( ndr1_0
& c1_1(a220)
& c2_1(a220)
& c0_1(a220) ) )
& ( hskp13
| ! [U] :
( ndr1_0
=> ( c3_1(U)
| c2_1(U)
| c0_1(U) ) )
| hskp0 )
& ( ! [V] :
( ndr1_0
=> ( c3_1(V)
| ~ c0_1(V)
| ~ c1_1(V) ) )
| ! [W] :
( ndr1_0
=> ( ~ c3_1(W)
| c2_1(W)
| ~ c1_1(W) ) )
| hskp1 )
& ( ! [X] :
( ndr1_0
=> ( ~ c2_1(X)
| ~ c0_1(X)
| ~ c1_1(X) ) )
| ! [Y] :
( ndr1_0
=> ( c2_1(Y)
| c1_1(Y)
| ~ c0_1(Y) ) )
| hskp14 )
& ( ! [Z] :
( ndr1_0
=> ( c0_1(Z)
| c3_1(Z)
| c2_1(Z) ) )
| hskp15
| ! [X1] :
( ndr1_0
=> ( ~ c1_1(X1)
| ~ c0_1(X1)
| ~ c3_1(X1) ) ) )
& ( hskp0
| ! [X2] :
( ndr1_0
=> ( ~ c3_1(X2)
| ~ c2_1(X2)
| c0_1(X2) ) )
| ! [X3] :
( ndr1_0
=> ( c0_1(X3)
| ~ c3_1(X3)
| c2_1(X3) ) ) )
& ( hskp2
| hskp16
| hskp17 )
& ( ! [X4] :
( ndr1_0
=> ( c2_1(X4)
| c0_1(X4)
| c1_1(X4) ) )
| ! [X5] :
( ndr1_0
=> ( c3_1(X5)
| ~ c0_1(X5)
| c1_1(X5) ) )
| ! [X6] :
( ndr1_0
=> ( c1_1(X6)
| c2_1(X6)
| c3_1(X6) ) ) )
& ( ! [X7] :
( ndr1_0
=> ( c3_1(X7)
| c0_1(X7)
| ~ c1_1(X7) ) )
| ! [X8] :
( ndr1_0
=> ( ~ c2_1(X8)
| ~ c3_1(X8)
| ~ c1_1(X8) ) )
| ! [X9] :
( ndr1_0
=> ( c1_1(X9)
| c3_1(X9)
| ~ c0_1(X9) ) ) )
& ( hskp3
| hskp18
| hskp4 )
& ( ! [X10] :
( ndr1_0
=> ( c0_1(X10)
| c2_1(X10)
| ~ c1_1(X10) ) )
| ! [X11] :
( ndr1_0
=> ( ~ c0_1(X11)
| ~ c2_1(X11)
| c1_1(X11) ) )
| hskp19 )
& ( hskp20
| hskp5
| ! [X12] :
( ndr1_0
=> ( c2_1(X12)
| c3_1(X12)
| ~ c0_1(X12) ) ) )
& ( hskp6
| hskp7
| ! [X13] :
( ndr1_0
=> ( c1_1(X13)
| ~ c3_1(X13)
| c0_1(X13) ) ) )
& ( ! [X14] :
( ndr1_0
=> ( c0_1(X14)
| c1_1(X14)
| ~ c3_1(X14) ) )
| ! [X15] :
( ndr1_0
=> ( c0_1(X15)
| ~ c2_1(X15)
| c1_1(X15) ) )
| ! [X16] :
( ndr1_0
=> ( ~ c0_1(X16)
| ~ c3_1(X16)
| ~ c2_1(X16) ) ) )
& ( hskp8
| hskp21
| hskp9 )
& ( ! [X17] :
( ndr1_0
=> ( c2_1(X17)
| ~ c0_1(X17)
| c3_1(X17) ) )
| ! [X18] :
( ndr1_0
=> ( ~ c0_1(X18)
| c1_1(X18)
| ~ c3_1(X18) ) )
| hskp22 )
& ( ! [X19] :
( ndr1_0
=> ( ~ c0_1(X19)
| ~ c3_1(X19)
| c1_1(X19) ) )
| ! [X20] :
( ndr1_0
=> ( ~ c2_1(X20)
| ~ c0_1(X20)
| c1_1(X20) ) )
| ! [X21] :
( ndr1_0
=> ( c1_1(X21)
| c3_1(X21)
| ~ c0_1(X21) ) ) )
& ( ! [X22] :
( ndr1_0
=> ( c0_1(X22)
| ~ c2_1(X22)
| c3_1(X22) ) )
| hskp10
| ! [X23] :
( ndr1_0
=> ( c1_1(X23)
| ~ c2_1(X23)
| c0_1(X23) ) ) )
& ( hskp23
| hskp24
| ! [X24] :
( ndr1_0
=> ( c0_1(X24)
| c1_1(X24)
| c3_1(X24) ) ) )
& ( hskp25
| ! [X25] :
( ndr1_0
=> ( c1_1(X25)
| ~ c2_1(X25)
| ~ c0_1(X25) ) )
| hskp11 )
& ( ! [X26] :
( ndr1_0
=> ( c1_1(X26)
| c0_1(X26)
| c2_1(X26) ) )
| ! [X27] :
( ndr1_0
=> ( ~ c2_1(X27)
| ~ c3_1(X27)
| ~ c1_1(X27) ) )
| hskp12 ) ) ).
%--------------------------------------------------------------------------