TPTP Problem File: SYN432+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN432+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=20, K=3, D=1, P=0, Index=020
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-20-3-1-020.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v4.1.0, 0.50 v4.0.1, 0.33 v3.7.0, 0.00 v3.5.0, 0.25 v3.4.0, 0.00 v3.1.0, 0.17 v2.7.0, 0.33 v2.6.0, 0.00 v2.5.0, 0.33 v2.3.0, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 288 ( 0 equ)
% Maximal formula atoms : 288 ( 288 avg)
% Number of connectives : 398 ( 111 ~; 122 |; 139 &)
% ( 0 <=>; 26 =>; 0 <=; 0 <~>)
% Maximal formula depth : 58 ( 58 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 35 ( 35 usr; 31 prp; 0-1 aty)
% Number of functors : 30 ( 30 usr; 30 con; 0-0 aty)
% Number of variables : 26 ( 26 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& ~ c0_1(a168)
& ~ c2_1(a168)
& ~ c1_1(a168) ) )
& ( ~ hskp1
| ( ndr1_0
& c3_1(a169)
& ~ c1_1(a169)
& ~ c0_1(a169) ) )
& ( ~ hskp2
| ( ndr1_0
& c3_1(a172)
& ~ c2_1(a172)
& ~ c1_1(a172) ) )
& ( ~ hskp3
| ( ndr1_0
& ~ c1_1(a173)
& c3_1(a173)
& ~ c2_1(a173) ) )
& ( ~ hskp4
| ( ndr1_0
& ~ c1_1(a176)
& ~ c3_1(a176)
& ~ c0_1(a176) ) )
& ( ~ hskp5
| ( ndr1_0
& ~ c3_1(a178)
& ~ c0_1(a178)
& ~ c1_1(a178) ) )
& ( ~ hskp6
| ( ndr1_0
& c0_1(a181)
& ~ c1_1(a181)
& ~ c2_1(a181) ) )
& ( ~ hskp7
| ( ndr1_0
& c2_1(a189)
& c1_1(a189)
& ~ c3_1(a189) ) )
& ( ~ hskp8
| ( ndr1_0
& ~ c0_1(a192)
& c3_1(a192)
& ~ c2_1(a192) ) )
& ( ~ hskp9
| ( ndr1_0
& c3_1(a195)
& c2_1(a195)
& ~ c1_1(a195) ) )
& ( ~ hskp10
| ( ndr1_0
& ~ c0_1(a162)
& ~ c3_1(a162)
& c2_1(a162) ) )
& ( ~ hskp11
| ( ndr1_0
& ~ c1_1(a163)
& c0_1(a163)
& c3_1(a163) ) )
& ( ~ hskp12
| ( ndr1_0
& ~ c0_1(a164)
& ~ c1_1(a164)
& c2_1(a164) ) )
& ( ~ hskp13
| ( ndr1_0
& c1_1(a166)
& ~ c2_1(a166)
& c3_1(a166) ) )
& ( ~ hskp14
| ( ndr1_0
& ~ c2_1(a167)
& c0_1(a167)
& c3_1(a167) ) )
& ( ~ hskp15
| ( ndr1_0
& c1_1(a170)
& c0_1(a170)
& c2_1(a170) ) )
& ( ~ hskp16
| ( ndr1_0
& c1_1(a171)
& ~ c3_1(a171)
& c0_1(a171) ) )
& ( ~ hskp17
| ( ndr1_0
& ~ c3_1(a174)
& c0_1(a174)
& c2_1(a174) ) )
& ( ~ hskp18
| ( ndr1_0
& c1_1(a175)
& c3_1(a175)
& c2_1(a175) ) )
& ( ~ hskp19
| ( ndr1_0
& ~ c0_1(a177)
& c3_1(a177)
& c1_1(a177) ) )
& ( ~ hskp20
| ( ndr1_0
& c3_1(a179)
& c2_1(a179)
& c0_1(a179) ) )
& ( ~ hskp21
| ( ndr1_0
& ~ c1_1(a180)
& ~ c2_1(a180)
& c3_1(a180) ) )
& ( ~ hskp22
| ( ndr1_0
& c2_1(a183)
& ~ c3_1(a183)
& c0_1(a183) ) )
& ( ~ hskp23
| ( ndr1_0
& c1_1(a184)
& c2_1(a184)
& c0_1(a184) ) )
& ( ~ hskp24
| ( ndr1_0
& c1_1(a185)
& c3_1(a185)
& c0_1(a185) ) )
& ( ~ hskp25
| ( ndr1_0
& ~ c0_1(a186)
& ~ c2_1(a186)
& c1_1(a186) ) )
& ( ~ hskp26
| ( ndr1_0
& ~ c2_1(a187)
& ~ c1_1(a187)
& c3_1(a187) ) )
& ( ~ hskp27
| ( ndr1_0
& ~ c2_1(a188)
& c1_1(a188)
& c0_1(a188) ) )
& ( ~ hskp28
| ( ndr1_0
& c2_1(a190)
& ~ c1_1(a190)
& c0_1(a190) ) )
& ( ~ hskp29
| ( ndr1_0
& c2_1(a193)
& c3_1(a193)
& c0_1(a193) ) )
& ( hskp10
| ! [U] :
( ndr1_0
=> ( c2_1(U)
| c1_1(U)
| c3_1(U) ) )
| ! [V] :
( ndr1_0
=> ( c3_1(V)
| c1_1(V)
| ~ c2_1(V) ) ) )
& ( ! [W] :
( ndr1_0
=> ( ~ c3_1(W)
| ~ c1_1(W)
| ~ c0_1(W) ) )
| hskp11
| ! [X] :
( ndr1_0
=> ( ~ c1_1(X)
| ~ c2_1(X)
| ~ c0_1(X) ) ) )
& ( ! [Y] :
( ndr1_0
=> ( c1_1(Y)
| c2_1(Y)
| c0_1(Y) ) )
| hskp12
| hskp11 )
& ( ! [Z] :
( ndr1_0
=> ( ~ c3_1(Z)
| ~ c0_1(Z)
| ~ c2_1(Z) ) )
| ! [X1] :
( ndr1_0
=> ( ~ c2_1(X1)
| c3_1(X1)
| c1_1(X1) ) )
| hskp13 )
& ( hskp14
| ! [X2] :
( ndr1_0
=> ( ~ c2_1(X2)
| ~ c0_1(X2)
| ~ c1_1(X2) ) )
| hskp0 )
& ( ! [X3] :
( ndr1_0
=> ( ~ c3_1(X3)
| c2_1(X3)
| c1_1(X3) ) )
| hskp1
| hskp15 )
& ( ! [X4] :
( ndr1_0
=> ( ~ c1_1(X4)
| ~ c2_1(X4)
| c3_1(X4) ) )
| hskp16
| hskp2 )
& ( ! [X5] :
( ndr1_0
=> ( c3_1(X5)
| c2_1(X5)
| ~ c1_1(X5) ) )
| ! [X6] :
( ndr1_0
=> ( ~ c0_1(X6)
| c3_1(X6)
| c2_1(X6) ) )
| hskp3 )
& ( ! [X7] :
( ndr1_0
=> ( c2_1(X7)
| c0_1(X7)
| ~ c3_1(X7) ) )
| hskp17
| ! [X8] :
( ndr1_0
=> ( ~ c2_1(X8)
| c1_1(X8)
| ~ c3_1(X8) ) ) )
& ( hskp18
| ! [X9] :
( ndr1_0
=> ( c2_1(X9)
| c1_1(X9)
| ~ c0_1(X9) ) )
| ! [X10] :
( ndr1_0
=> ( c1_1(X10)
| ~ c3_1(X10)
| ~ c2_1(X10) ) ) )
& ( hskp4
| hskp19
| ! [X11] :
( ndr1_0
=> ( ~ c1_1(X11)
| c3_1(X11)
| c0_1(X11) ) ) )
& ( hskp5
| hskp20
| hskp21 )
& ( hskp6
| hskp17
| hskp22 )
& ( hskp23
| hskp24
| ! [X12] :
( ndr1_0
=> ( ~ c2_1(X12)
| c1_1(X12)
| c3_1(X12) ) ) )
& ( hskp25
| ! [X13] :
( ndr1_0
=> ( ~ c0_1(X13)
| ~ c1_1(X13)
| c3_1(X13) ) )
| hskp26 )
& ( hskp27
| ! [X14] :
( ndr1_0
=> ( ~ c2_1(X14)
| ~ c1_1(X14)
| c3_1(X14) ) )
| hskp7 )
& ( ! [X15] :
( ndr1_0
=> ( ~ c1_1(X15)
| c2_1(X15)
| c3_1(X15) ) )
| ! [X16] :
( ndr1_0
=> ( c3_1(X16)
| ~ c1_1(X16)
| ~ c2_1(X16) ) )
| ! [X17] :
( ndr1_0
=> ( c0_1(X17)
| ~ c2_1(X17)
| c3_1(X17) ) ) )
& ( hskp28
| hskp21
| hskp8 )
& ( hskp29
| ! [X18] :
( ndr1_0
=> ( ~ c1_1(X18)
| c0_1(X18)
| ~ c2_1(X18) ) )
| hskp25 )
& ( hskp9
| ! [X19] :
( ndr1_0
=> ( ~ c3_1(X19)
| ~ c1_1(X19)
| c0_1(X19) ) )
| ! [X20] :
( ndr1_0
=> ( c1_1(X20)
| c0_1(X20)
| ~ c2_1(X20) ) ) ) ) ).
%--------------------------------------------------------------------------