TPTP Problem File: SYN430+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN430+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=16, K=3, D=1, P=0, Index=037
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-16-3-1-037.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v4.1.0, 0.17 v4.0.1, 0.00 v3.1.0, 0.17 v2.6.0, 0.00 v2.4.0, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 236 ( 0 equ)
% Maximal formula atoms : 236 ( 236 avg)
% Number of connectives : 340 ( 105 ~; 99 |; 115 &)
% ( 0 <=>; 21 =>; 0 <=; 0 <~>)
% Maximal formula depth : 49 ( 49 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 30 ( 30 usr; 26 prp; 0-1 aty)
% Number of functors : 25 ( 25 usr; 25 con; 0-0 aty)
% Number of variables : 21 ( 21 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& c3_1(a105)
& ~ c1_1(a105)
& ~ c2_1(a105) ) )
& ( ~ hskp1
| ( ndr1_0
& ~ c3_1(a107)
& ~ c1_1(a107)
& ~ c0_1(a107) ) )
& ( ~ hskp2
| ( ndr1_0
& c3_1(a108)
& ~ c2_1(a108)
& ~ c1_1(a108) ) )
& ( ~ hskp3
| ( ndr1_0
& ~ c2_1(a109)
& c3_1(a109)
& ~ c1_1(a109) ) )
& ( ~ hskp4
| ( ndr1_0
& ~ c3_1(a110)
& ~ c1_1(a110)
& ~ c2_1(a110) ) )
& ( ~ hskp5
| ( ndr1_0
& c2_1(a111)
& c0_1(a111)
& ~ c1_1(a111) ) )
& ( ~ hskp6
| ( ndr1_0
& ~ c1_1(a112)
& ~ c0_1(a112)
& ~ c2_1(a112) ) )
& ( ~ hskp7
| ( ndr1_0
& c1_1(a114)
& c2_1(a114)
& ~ c0_1(a114) ) )
& ( ~ hskp8
| ( ndr1_0
& ~ c2_1(a118)
& ~ c1_1(a118)
& ~ c0_1(a118) ) )
& ( ~ hskp9
| ( ndr1_0
& ~ c1_1(a120)
& ~ c2_1(a120)
& ~ c0_1(a120) ) )
& ( ~ hskp10
| ( ndr1_0
& c2_1(a122)
& ~ c1_1(a122)
& ~ c3_1(a122) ) )
& ( ~ hskp11
| ( ndr1_0
& c3_1(a123)
& ~ c0_1(a123)
& ~ c1_1(a123) ) )
& ( ~ hskp12
| ( ndr1_0
& c1_1(a126)
& c0_1(a126)
& ~ c3_1(a126) ) )
& ( ~ hskp13
| ( ndr1_0
& ~ c2_1(a127)
& ~ c3_1(a127)
& ~ c1_1(a127) ) )
& ( ~ hskp14
| ( ndr1_0
& c3_1(a128)
& ~ c2_1(a128)
& ~ c0_1(a128) ) )
& ( ~ hskp15
| ( ndr1_0
& ~ c0_1(a106)
& ~ c2_1(a106)
& c3_1(a106) ) )
& ( ~ hskp16
| ( ndr1_0
& ~ c3_1(a113)
& ~ c1_1(a113)
& c0_1(a113) ) )
& ( ~ hskp17
| ( ndr1_0
& ~ c0_1(a115)
& c2_1(a115)
& c1_1(a115) ) )
& ( ~ hskp18
| ( ndr1_0
& c1_1(a116)
& ~ c3_1(a116)
& c0_1(a116) ) )
& ( ~ hskp19
| ( ndr1_0
& ~ c2_1(a117)
& ~ c1_1(a117)
& c0_1(a117) ) )
& ( ~ hskp20
| ( ndr1_0
& ~ c0_1(a119)
& c1_1(a119)
& c2_1(a119) ) )
& ( ~ hskp21
| ( ndr1_0
& c3_1(a121)
& c1_1(a121)
& c2_1(a121) ) )
& ( ~ hskp22
| ( ndr1_0
& ~ c0_1(a129)
& ~ c3_1(a129)
& c1_1(a129) ) )
& ( ~ hskp23
| ( ndr1_0
& ~ c2_1(a130)
& ~ c1_1(a130)
& c3_1(a130) ) )
& ( ~ hskp24
| ( ndr1_0
& ~ c1_1(a131)
& c0_1(a131)
& c3_1(a131) ) )
& ( hskp0
| ! [U] :
( ndr1_0
=> ( ~ c1_1(U)
| ~ c2_1(U)
| c3_1(U) ) )
| hskp15 )
& ( hskp1
| ! [V] :
( ndr1_0
=> ( c3_1(V)
| c0_1(V)
| ~ c1_1(V) ) )
| hskp2 )
& ( hskp3
| hskp4
| ! [W] :
( ndr1_0
=> ( ~ c2_1(W)
| c3_1(W)
| ~ c0_1(W) ) ) )
& ( ! [X] :
( ndr1_0
=> ( ~ c0_1(X)
| c2_1(X)
| c3_1(X) ) )
| hskp5
| ! [Y] :
( ndr1_0
=> ( ~ c1_1(Y)
| c3_1(Y)
| ~ c2_1(Y) ) ) )
& ( hskp6
| hskp16
| ! [Z] :
( ndr1_0
=> ( c3_1(Z)
| c0_1(Z)
| c1_1(Z) ) ) )
& ( hskp7
| hskp17
| hskp18 )
& ( ! [X1] :
( ndr1_0
=> ( c0_1(X1)
| c2_1(X1)
| ~ c1_1(X1) ) )
| ! [X2] :
( ndr1_0
=> ( c1_1(X2)
| ~ c2_1(X2)
| c0_1(X2) ) )
| ! [X3] :
( ndr1_0
=> ( ~ c2_1(X3)
| ~ c0_1(X3)
| ~ c1_1(X3) ) ) )
& ( ! [X4] :
( ndr1_0
=> ( c2_1(X4)
| ~ c3_1(X4)
| c0_1(X4) ) )
| hskp19
| ! [X5] :
( ndr1_0
=> ( ~ c1_1(X5)
| c3_1(X5)
| c2_1(X5) ) ) )
& ( ! [X6] :
( ndr1_0
=> ( ~ c1_1(X6)
| ~ c0_1(X6)
| ~ c3_1(X6) ) )
| ! [X7] :
( ndr1_0
=> ( ~ c3_1(X7)
| ~ c1_1(X7)
| ~ c0_1(X7) ) )
| ! [X8] :
( ndr1_0
=> ( c2_1(X8)
| c0_1(X8)
| ~ c3_1(X8) ) ) )
& ( hskp8
| hskp20
| hskp9 )
& ( ! [X9] :
( ndr1_0
=> ( c0_1(X9)
| ~ c3_1(X9)
| c1_1(X9) ) )
| hskp21
| hskp10 )
& ( ! [X10] :
( ndr1_0
=> ( c2_1(X10)
| ~ c0_1(X10)
| ~ c1_1(X10) ) )
| ! [X11] :
( ndr1_0
=> ( c1_1(X11)
| c2_1(X11)
| c0_1(X11) ) )
| ! [X12] :
( ndr1_0
=> ( ~ c3_1(X12)
| c0_1(X12)
| ~ c1_1(X12) ) ) )
& ( hskp11
| hskp7
| hskp6 )
& ( ! [X13] :
( ndr1_0
=> ( ~ c1_1(X13)
| c0_1(X13)
| ~ c2_1(X13) ) )
| hskp12
| hskp13 )
& ( hskp14
| hskp22
| ! [X14] :
( ndr1_0
=> ( c3_1(X14)
| ~ c2_1(X14)
| ~ c1_1(X14) ) ) )
& ( hskp23
| hskp24
| ! [X15] :
( ndr1_0
=> ( c3_1(X15)
| ~ c1_1(X15)
| c2_1(X15) ) ) ) ) ).
%--------------------------------------------------------------------------