TPTP Problem File: SYN415+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN415+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Syntactic
% Problem : Kalish and Montague Problem 317
% Version : Especial.
% English :
% Refs : [KM64] Kalish & Montegue (1964), Logic: Techniques of Formal
% : [Hah94] Haehnle (1994), Email to G. Sutcliffe
% Source : [Hah94]
% Names : kalish317 [Hah94]
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.11 v8.1.0, 0.08 v7.5.0, 0.09 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.04 v6.2.0, 0.16 v6.1.0, 0.07 v6.0.0, 0.04 v5.5.0, 0.07 v5.4.0, 0.11 v5.3.0, 0.15 v5.2.0, 0.05 v5.0.0, 0.08 v4.1.0, 0.09 v4.0.0, 0.08 v3.7.0, 0.00 v3.2.0, 0.22 v3.1.0, 0.33 v2.6.0, 0.00 v2.5.0, 0.33 v2.4.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 7 ( 2 equ)
% Maximal formula atoms : 7 ( 7 avg)
% Number of connectives : 6 ( 0 ~; 0 |; 3 &)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 7 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 5 ( 3 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Problem axioms
fof(kalish317,conjecture,
( ( ? [X] : f(X)
& ! [Y,Z] :
( ( f(Y)
& f(Z) )
=> Y = Z ) )
<=> ? [U] :
( f(U)
& ! [V] :
( f(V)
=> U = V ) ) ) ).
%--------------------------------------------------------------------------