TPTP Problem File: SYN364+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN364+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Syntactic
% Problem : Peter Andrews Problem X2115
% Version : Especial.
% English :
% Refs : [And86] Andrews (1986), An Introduction to Mathematical Logic
% : [And94] Andrews (1994), Email to G. Sutcliffe
% Source : [And94]
% Names : X2115 [And86]
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v6.3.0, 0.08 v6.2.0, 0.00 v5.5.0, 0.04 v5.3.0, 0.13 v5.2.0, 0.07 v5.0.0, 0.05 v4.1.0, 0.06 v4.0.1, 0.11 v4.0.0, 0.10 v3.7.0, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 9 ( 0 equ)
% Maximal formula atoms : 9 ( 9 avg)
% Number of connectives : 9 ( 1 ~; 1 |; 4 &)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 8 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 8 ( 5 !; 3 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(x2115,conjecture,
( ( ! [X] :
( ? [Y] : big_p(X,Y)
=> ! [Z] : big_p(Z,Z) )
& ! [U] :
? [V] :
( big_p(U,V)
| ( big_m(U)
& big_q(f(U,V)) ) )
& ! [W] :
( big_q(W)
=> ~ big_m(g(W)) ) )
=> ! [U] :
? [V] :
( big_p(g(U),V)
& big_p(U,U) ) ) ).
%--------------------------------------------------------------------------