TPTP Problem File: SYN348-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN348-1 : TPTP v9.0.0. Released v1.2.0.
% Domain : Syntactic
% Problem : Church problem 46.17 (4)
% Version : Especial.
% English :
% Refs : [Chu56] Church (1956), Introduction to Mathematical Logic I
% : [FL+93] Fermuller et al. (1993), Resolution Methods for the De
% : [Tam94] Tammet (1994), Email to Geoff Sutcliffe.
% : [Pel98] Peltier (1998), A New Method for Automated Finite Mode
% Source : [Tam94]
% Names : Ch17N4 [Tam94]
% : 4.2.7 [Pel98]
% Status : Satisfiable
% Rating : 0.00 v3.1.0, 0.14 v2.7.0, 0.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 16 ( 0 unt; 15 nHn; 15 RR)
% Number of literals : 96 ( 0 equ; 48 neg)
% Maximal clause size : 6 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 32 ( 0 sgn)
% SPC : CNF_SAT_RFO_NEQ
% Comments : All the problems here can be decided by using a certain
% completeness-preserving term ordering strategies. See [FL+93].
% : The conversion from the full 1st order form in [Chu56]
% to clause form was done by hand by Tanel Tammet.
%--------------------------------------------------------------------------
cnf(clause1,negated_conjecture,
( ~ f(X,g(X,Y))
| f(g(X,Y),Y)
| ~ f(Y,g(X,Y))
| f(g(X,Y),X)
| ~ f(w(X),g(X,Y))
| f(g(X,Y),w(X)) ) ).
cnf(clause2,negated_conjecture,
( ~ f(X,g(X,Y))
| f(g(X,Y),Y)
| ~ f(Y,g(X,Y))
| f(g(X,Y),X)
| f(w(X),g(X,Y))
| ~ f(g(X,Y),w(X)) ) ).
cnf(clause3,negated_conjecture,
( f(X,g(X,Y))
| ~ f(g(X,Y),Y)
| ~ f(Y,g(X,Y))
| f(g(X,Y),X)
| f(w(X),g(X,Y))
| f(g(X,Y),w(X)) ) ).
cnf(clause4,negated_conjecture,
( f(X,g(X,Y))
| ~ f(g(X,Y),Y)
| ~ f(Y,g(X,Y))
| f(g(X,Y),X)
| ~ f(w(X),g(X,Y))
| ~ f(g(X,Y),w(X)) ) ).
cnf(clause5,negated_conjecture,
( f(X,g(X,Y))
| f(g(X,Y),Y)
| f(Y,g(X,Y))
| f(g(X,Y),X)
| f(w(X),g(X,Y))
| f(g(X,Y),w(X)) ) ).
cnf(clause6,negated_conjecture,
( f(X,g(X,Y))
| f(g(X,Y),Y)
| f(Y,g(X,Y))
| f(g(X,Y),X)
| ~ f(w(X),g(X,Y))
| ~ f(g(X,Y),w(X)) ) ).
cnf(clause7,negated_conjecture,
( ~ f(X,g(X,Y))
| ~ f(g(X,Y),Y)
| f(Y,g(X,Y))
| f(g(X,Y),X)
| ~ f(w(X),g(X,Y))
| f(g(X,Y),w(X)) ) ).
cnf(clause8,negated_conjecture,
( ~ f(X,g(X,Y))
| ~ f(g(X,Y),Y)
| f(Y,g(X,Y))
| f(g(X,Y),X)
| f(w(X),g(X,Y))
| ~ f(g(X,Y),w(X)) ) ).
cnf(clause9,negated_conjecture,
( ~ f(X,g(X,Y))
| f(g(X,Y),Y)
| f(Y,g(X,Y))
| ~ f(g(X,Y),X)
| f(w(X),g(X,Y))
| f(g(X,Y),w(X)) ) ).
cnf(clause10,negated_conjecture,
( ~ f(X,g(X,Y))
| f(g(X,Y),Y)
| f(Y,g(X,Y))
| ~ f(g(X,Y),X)
| ~ f(w(X),g(X,Y))
| ~ f(g(X,Y),w(X)) ) ).
cnf(clause11,negated_conjecture,
( f(X,g(X,Y))
| ~ f(g(X,Y),Y)
| f(Y,g(X,Y))
| ~ f(g(X,Y),X)
| ~ f(w(X),g(X,Y))
| f(g(X,Y),w(X)) ) ).
cnf(clause12,negated_conjecture,
( f(X,g(X,Y))
| ~ f(g(X,Y),Y)
| f(Y,g(X,Y))
| ~ f(g(X,Y),X)
| f(w(X),g(X,Y))
| ~ f(g(X,Y),w(X)) ) ).
cnf(clause13,negated_conjecture,
( f(X,g(X,Y))
| f(g(X,Y),Y)
| ~ f(Y,g(X,Y))
| ~ f(g(X,Y),X)
| ~ f(w(X),g(X,Y))
| f(g(X,Y),w(X)) ) ).
cnf(clause14,negated_conjecture,
( f(X,g(X,Y))
| f(g(X,Y),Y)
| ~ f(Y,g(X,Y))
| ~ f(g(X,Y),X)
| f(w(X),g(X,Y))
| ~ f(g(X,Y),w(X)) ) ).
cnf(clause15,negated_conjecture,
( ~ f(X,g(X,Y))
| ~ f(g(X,Y),Y)
| ~ f(Y,g(X,Y))
| ~ f(g(X,Y),X)
| f(w(X),g(X,Y))
| f(g(X,Y),w(X)) ) ).
cnf(clause16,negated_conjecture,
( ~ f(X,g(X,Y))
| ~ f(g(X,Y),Y)
| ~ f(Y,g(X,Y))
| ~ f(g(X,Y),X)
| ~ f(w(X),g(X,Y))
| ~ f(g(X,Y),w(X)) ) ).
%--------------------------------------------------------------------------