TPTP Problem File: SYN347+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN347+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Syntactic
% Problem : Church problem 46.17 (3)
% Version : Especial.
% English :
% Refs : [Chu56] Church (1956), Introduction to Mathematical Logic I
% Source : [Chu56]
% Names : 46.17 (3) [Chu56]
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v5.5.0, 0.08 v5.4.0, 0.09 v5.3.0, 0.13 v5.2.0, 0.07 v5.0.0, 0.05 v4.1.0, 0.06 v4.0.1, 0.05 v4.0.0, 0.10 v3.7.0, 0.33 v3.5.0, 0.12 v3.4.0, 0.08 v3.3.0, 0.11 v3.2.0, 0.33 v3.1.0, 0.17 v2.7.0, 0.00 v2.5.0, 0.33 v2.4.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 5 ( 0 equ)
% Maximal formula atoms : 5 ( 5 avg)
% Number of connectives : 4 ( 0 ~; 1 |; 0 &)
% ( 3 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 9 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 5 ( 3 !; 2 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : In [Chu56] the variables Z1 and Z2 are not quantified.
% I have assumed universal quantification.
%--------------------------------------------------------------------------
fof(church_46_17_3,conjecture,
! [Z1,Z2] :
? [X1,X2] :
! [Y] :
( ( ( big_f(X1,Y)
<=> big_f(X2,Y) )
<=> big_f(Z1,Z2) )
| ( big_f(Z1,Y)
<=> big_f(Z2,Y) ) ) ).
%--------------------------------------------------------------------------