TPTP Problem File: SYN335-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN335-1 : TPTP v9.0.0. Released v1.2.0.
% Domain : Syntactic
% Problem : Church problem 46.14 (7)
% Version : Especial.
% English :
% Refs : [Chu56] Church (1956), Introduction to Mathematical Logic I
% : [FL+93] Fermuller et al. (1993), Resolution Methods for the De
% : [Tam94] Tammet (1994), Email to Geoff Sutcliffe.
% Source : [Tam94]
% Names : Ch14N7 [Tam94]
% Status : Satisfiable
% Rating : 0.00 v6.3.0, 0.33 v6.2.0, 0.40 v6.1.0, 0.00 v5.4.0, 0.33 v5.3.0, 0.29 v5.0.0, 0.50 v4.1.0, 0.57 v4.0.0, 0.50 v3.5.0, 0.57 v3.4.0, 0.50 v3.3.0, 0.33 v3.2.0, 0.20 v3.1.0, 0.29 v2.7.0, 0.00 v2.6.0, 0.25 v2.5.0, 0.50 v2.4.0, 0.33 v2.2.1, 0.50 v2.2.0, 0.67 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 12 ( 1 unt; 4 nHn; 7 RR)
% Number of literals : 26 ( 0 equ; 11 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 24 ( 1 sgn)
% SPC : CNF_SAT_RFO_NEQ
% Comments : All the problems here can be decided by using a certain
% completeness-preserving term ordering strategies. See [FL+93].
% : The conversion from the full 1st order form in [Chu56]
% to clause form was done by hand by Tanel Tammet.
%--------------------------------------------------------------------------
cnf(clause1,negated_conjecture,
f(X,z(X,Y)) ).
cnf(clause2,negated_conjecture,
( ~ f(z(X,Y),z(X,Y))
| g(z(X,Y),z(X,Y))
| ~ f(X,Y) ) ).
cnf(clause3,negated_conjecture,
( f(z(X,Y),z(X,Y))
| f(X,Y) ) ).
cnf(clause4,negated_conjecture,
( ~ g(z(X,Y),z(X,Y))
| f(X,Y) ) ).
cnf(clause5,negated_conjecture,
( ~ g(z(X,Y),z(X,Y))
| f(z(X,Y),z(X,Y))
| ~ g(X,Y) ) ).
cnf(clause6,negated_conjecture,
( g(z(X,Y),z(X,Y))
| g(X,Y) ) ).
cnf(clause7,negated_conjecture,
( ~ f(z(X,Y),z(X,Y))
| g(X,Y) ) ).
cnf(clause8,negated_conjecture,
( ~ g(X,Y)
| f(Y,X)
| ~ g(Y,z(X,Y)) ) ).
cnf(clause9,negated_conjecture,
( g(X,Y)
| g(Y,z(X,Y)) ) ).
cnf(clause10,negated_conjecture,
( ~ f(Y,X)
| g(Y,z(X,Y)) ) ).
cnf(clause11,negated_conjecture,
( f(z(X,Y),Y)
| f(Y,X) ) ).
cnf(clause12,negated_conjecture,
( ~ f(z(X,Y),Y)
| ~ f(Y,X) ) ).
%--------------------------------------------------------------------------