TPTP Problem File: SYN074-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN074-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Syntactic
% Problem : Pelletier Problem 51
% Version : Especial.
% English :
% Refs : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% Source : [Pel86]
% Names : Pelletier 51 [Pel86]
% Status : Unsatisfiable
% Rating : 0.10 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.09 v6.2.0, 0.00 v6.1.0, 0.14 v6.0.0, 0.00 v5.5.0, 0.15 v5.3.0, 0.17 v5.2.0, 0.06 v5.1.0, 0.12 v5.0.0, 0.14 v4.1.0, 0.08 v4.0.1, 0.18 v4.0.0, 0.09 v3.7.0, 0.10 v3.5.0, 0.09 v3.4.0, 0.08 v3.3.0, 0.14 v3.2.0, 0.08 v3.1.0, 0.18 v2.7.0, 0.08 v2.6.0, 0.10 v2.5.0, 0.08 v2.4.0, 0.11 v2.2.1, 0.11 v2.2.0, 0.11 v2.1.0, 0.22 v2.0.0
% Syntax : Number of clauses : 11 ( 0 unt; 5 nHn; 8 RR)
% Number of literals : 35 ( 20 equ; 18 neg)
% Maximal clause size : 4 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 26 ( 2 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
cnf(clause_1,axiom,
( ~ big_f(X,Y)
| X = a ) ).
cnf(clause_2,axiom,
( ~ big_f(X,Y)
| Y = b ) ).
cnf(clause_3,axiom,
( X != a
| Y != b
| big_f(X,Y) ) ).
cnf(clause_4,negated_conjecture,
( ~ big_f(f(X),Y)
| Y = g(X)
| f(X) = X ) ).
cnf(clause_5,negated_conjecture,
( ~ big_f(f(X),Y)
| Y = g(X)
| big_f(f(X),h(X,Z))
| h(X,Z) = Z ) ).
cnf(clause_6,negated_conjecture,
( ~ big_f(f(X),Y)
| Y = g(X)
| h(X,Z) != Z
| ~ big_f(f(X),h(X,Z)) ) ).
cnf(clause_7,negated_conjecture,
( Y != g(X)
| big_f(f(X),Y)
| big_f(f(X),h(X,Z))
| h(X,Z) = Z ) ).
cnf(clause_8,negated_conjecture,
( Y != g(X)
| big_f(f(X),Y)
| f(X) = X ) ).
cnf(clause_9,negated_conjecture,
( Y != g(X)
| big_f(f(X),Y)
| h(X,Z) != Z
| ~ big_f(f(X),h(X,Z)) ) ).
cnf(clause_10,negated_conjecture,
( f(X) != X
| big_f(f(X),h(X,Z))
| h(X,Z) = Z ) ).
cnf(clause_11,negated_conjecture,
( f(X) != X
| h(X,Z) != Z
| ~ big_f(f(X),h(X,Z)) ) ).
%--------------------------------------------------------------------------