TPTP Problem File: SYN065+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN065+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Syntactic
% Problem : Pelletier Problem 36
% Version : Especial.
% English :
% Refs : [KM64] Kalish & Montegue (1964), Logic: Techniques of Formal
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [Hah94] Haehnle (1994), Email to G. Sutcliffe
% Source : [Hah94]
% Names : Pelletier 36 [Pel86]
% Status : Theorem
% Rating : 0.00 v6.3.0, 0.08 v6.2.0, 0.00 v5.5.0, 0.04 v5.3.0, 0.13 v5.2.0, 0.00 v5.0.0, 0.05 v4.1.0, 0.06 v4.0.1, 0.00 v3.4.0, 0.08 v3.3.0, 0.00 v2.1.0
% Syntax : Number of formulae : 4 ( 3 unt; 0 def)
% Number of atoms : 8 ( 0 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 4 ( 0 ~; 2 |; 0 &)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 2-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 9 ( 6 !; 3 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(pel36_1,axiom,
! [X] :
? [Y] : big_f(X,Y) ).
fof(pel36_2,axiom,
! [X] :
? [Y] : big_g(X,Y) ).
fof(pel36_3,axiom,
! [X,Y] :
( ( big_f(X,Y)
| big_g(X,Y) )
=> ! [Z] :
( ( big_f(Y,Z)
| big_g(Y,Z) )
=> big_h(X,Z) ) ) ).
fof(pel36,conjecture,
! [X] :
? [Y] : big_h(X,Y) ).
%--------------------------------------------------------------------------