TPTP Problem File: SYN063+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN063+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Syntactic
% Problem : Pelletier Problem 33
% Version : Especial.
% English :
% Refs : [KM64] Kalish & Montegue (1964), Logic: Techniques of Formal
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [Hah94] Haehnle (1994), Email to G. Sutcliffe
% Source : [Hah94]
% Names : Pelletier 33 [Pel86]
% Status : Theorem
% Rating : 0.00 v5.5.0, 0.11 v5.4.0, 0.00 v4.1.0, 0.06 v4.0.1, 0.05 v3.7.0, 0.33 v3.5.0, 0.12 v3.4.0, 0.08 v3.3.0, 0.00 v3.2.0, 0.11 v3.1.0, 0.00 v2.5.0, 0.33 v2.4.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 10 ( 0 equ)
% Maximal formula atoms : 10 ( 10 avg)
% Number of connectives : 12 ( 3 ~; 4 |; 2 &)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 7 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 3 ( 3 usr; 3 con; 0-0 aty)
% Number of variables : 2 ( 2 !; 0 ?)
% SPC : FOF_THM_EPR_NEQ
% Comments : This is a monadic predicate formulation of Pelletier 17.
%--------------------------------------------------------------------------
fof(pel33,conjecture,
( ! [X] :
( ( big_p(a)
& ( big_p(X)
=> big_p(b) ) )
=> big_p(c) )
<=> ! [X1] :
( ( ~ big_p(a)
| big_p(X1)
| big_p(c) )
& ( ~ big_p(a)
| ~ big_p(b)
| big_p(c) ) ) ) ).
%--------------------------------------------------------------------------