TPTP Problem File: SYN062+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN062+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Syntactic
% Problem : Pelletier Problem 32
% Version : Especial.
% English :
% Refs : [KM64] Kalish & Montegue (1964), Logic: Techniques of Formal
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [Hah94] Haehnle (1994), Email to G. Sutcliffe
% Source : [Hah94]
% Names : Pelletier 32 [Pel86]
% Status : Theorem
% Rating : 0.00 v5.3.0, 0.09 v5.2.0, 0.00 v2.1.0
% Syntax : Number of formulae : 4 ( 0 unt; 0 def)
% Number of atoms : 12 ( 0 equ)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 8 ( 0 ~; 1 |; 3 &)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 6 ( 6 usr; 0 prp; 1-1 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 4 ( 4 !; 0 ?)
% SPC : FOF_THM_EPR_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(pel32_1,axiom,
! [X] :
( ( big_f(X)
& ( big_g(X)
| big_h(X) ) )
=> big_i(X) ) ).
fof(pel32_2,axiom,
! [X] :
( ( big_i(X)
& big_h(X) )
=> big_j(X) ) ).
fof(pel32_3,axiom,
! [X] :
( big_k(X)
=> big_h(X) ) ).
fof(pel32,conjecture,
! [X] :
( ( big_f(X)
& big_k(X) )
=> big_j(X) ) ).
%--------------------------------------------------------------------------