TPTP Problem File: SYN056+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN056+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Syntactic
% Problem : Pelletier Problem 26
% Version : Especial.
% English :
% Refs : [KM64] Kalish & Montegue (1964), Logic: Techniques of Formal
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [Hah94] Haehnle (1994), Email to G. Sutcliffe
% Source : [Hah94]
% Names : Pelletier 26 [Pel86]
% Status : Theorem
% Rating : 0.00 v5.3.0, 0.09 v5.2.0, 0.00 v4.0.1, 0.05 v3.7.0, 0.00 v2.1.0
% Syntax : Number of formulae : 3 ( 0 unt; 0 def)
% Number of atoms : 10 ( 0 equ)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 7 ( 0 ~; 0 |; 1 &)
% ( 3 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 1-1 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 6 ( 4 !; 2 ?)
% SPC : FOF_THM_EPR_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(pel26_1,axiom,
( ? [X] : big_p(X)
<=> ? [Y] : big_q(Y) ) ).
fof(pel26_2,axiom,
! [X,Y] :
( ( big_p(X)
& big_q(Y) )
=> ( big_r(X)
<=> big_s(Y) ) ) ).
fof(pel26,conjecture,
( ! [X] :
( big_p(X)
=> big_r(X) )
<=> ! [Y] :
( big_q(Y)
=> big_s(Y) ) ) ).
%--------------------------------------------------------------------------