TPTP Problem File: SYN056^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN056^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem PELL26
% Version : Especial.
% English :
% Refs : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0368 [Bro09]
% : PELL26 [TPS]
% : Pelletier 26 [Pel86]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.08 v8.2.0, 0.09 v8.1.0, 0.08 v7.4.0, 0.11 v7.3.0, 0.10 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.12 v6.4.0, 0.14 v6.3.0, 0.17 v6.0.0, 0.00 v5.3.0, 0.25 v5.2.0, 0.00 v4.0.0
% Syntax : Number of formulae : 5 ( 0 unt; 4 typ; 0 def)
% Number of atoms : 18 ( 0 equ; 0 cnn)
% Maximal formula atoms : 18 ( 18 avg)
% Number of connectives : 35 ( 0 ~; 0 |; 5 &; 18 @)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 10 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 4 usr; 0 con; 1-1 aty)
% Number of variables : 10 ( 0 ^; 6 !; 4 ?; 10 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% :
%------------------------------------------------------------------------------
thf(cR,type,
cR: $i > $o ).
thf(cP,type,
cP: $i > $o ).
thf(cS,type,
cS: $i > $o ).
thf(cQ,type,
cQ: $i > $o ).
thf(cPELL26,conjecture,
( ( ( ? [Xx: $i] : ( cP @ Xx )
=> ? [Xx: $i] : ( cQ @ Xx ) )
& ( ? [Xx: $i] : ( cQ @ Xx )
=> ? [Xx: $i] : ( cP @ Xx ) )
& ! [Xx: $i,Xy: $i] :
( ( ( cP @ Xx )
& ( cQ @ Xy ) )
=> ( ( ( cR @ Xx )
=> ( cS @ Xy ) )
& ( ( cS @ Xy )
=> ( cR @ Xx ) ) ) ) )
=> ( ( ! [Xx: $i] :
( ( cP @ Xx )
=> ( cR @ Xx ) )
=> ! [Xx: $i] :
( ( cQ @ Xx )
=> ( cS @ Xx ) ) )
& ( ! [Xx: $i] :
( ( cQ @ Xx )
=> ( cS @ Xx ) )
=> ! [Xx: $i] :
( ( cP @ Xx )
=> ( cR @ Xx ) ) ) ) ) ).
%------------------------------------------------------------------------------