TPTP Problem File: SYN055+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN055+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Syntactic
% Problem : Pelletier Problem 25
% Version : Especial.
% English :
% Refs : [KM64] Kalish & Montegue (1964), Logic: Techniques of Formal
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [Hah94] Haehnle (1994), Email to G. Sutcliffe
% Source : [Hah94]
% Names : Pelletier 25 [Pel86]
% Status : ContradictoryAxioms
% Rating : 0.00 v8.1.0, 0.07 v7.5.0, 0.10 v7.4.0, 0.00 v5.3.0, 0.09 v5.2.0, 0.00 v2.1.0
% Syntax : Number of formulae : 5 ( 1 unt; 0 def)
% Number of atoms : 13 ( 0 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 9 ( 1 ~; 1 |; 4 &)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 1-1 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 6 ( 3 !; 3 ?)
% SPC : FOF_CAX_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(pel25_1,axiom,
? [X] : big_p(X) ).
fof(pel25_2,axiom,
! [X] :
( big_f(X)
=> ( ~ big_g(X)
& big_r(X) ) ) ).
fof(pel25_3,axiom,
! [X] :
( big_p(X)
=> ( big_g(X)
& big_f(X) ) ) ).
fof(pel25_4,axiom,
( ! [X] :
( big_p(X)
=> big_q(X) )
| ? [Z] :
( big_p(Z)
& big_r(Z) ) ) ).
fof(pel25,conjecture,
? [X] :
( big_q(X)
& big_p(X) ) ).
%--------------------------------------------------------------------------