TPTP Problem File: SYN051+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN051+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Syntactic
% Problem : Pelletier Problem 21
% Version : Especial.
% English : A moderately tricky problem, especially for 'natural' systems
% with 'strong' restrictions on variables generated from
% existential quantifiers.
% Refs : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [Hah94] Haehnle (1994), Email to G. Sutcliffe
% Source : [Hah94]
% Names : Pelletier 21 [Pel86]
% Status : Theorem
% Rating : 0.00 v5.4.0, 0.11 v5.3.0, 0.18 v5.2.0, 0.00 v4.1.0, 0.06 v4.0.1, 0.05 v3.7.0, 0.33 v3.5.0, 0.12 v3.4.0, 0.08 v3.3.0, 0.00 v3.2.0, 0.11 v3.1.0, 0.00 v2.5.0, 0.33 v2.4.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax : Number of formulae : 3 ( 0 unt; 0 def)
% Number of atoms : 6 ( 0 equ)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 0 &)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 3 ( 3 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 1 prp; 0-1 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 3 ( 0 !; 3 ?)
% SPC : FOF_THM_EPR_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(pel21_1,axiom,
? [X] :
( p
=> big_f(X) ) ).
fof(pel21_2,axiom,
? [X] :
( big_f(X)
=> p ) ).
fof(pel21,conjecture,
? [X] :
( p
<=> big_f(X) ) ).
%--------------------------------------------------------------------------