TPTP Problem File: SYN045^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN045^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Syntactic
% Problem : Pelletier Problem 13
% Version : [Ben12] axioms.
% English :
% Refs : [Goe69] Goedel (1969), An Interpretation of the Intuitionistic
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-GSY045+1 [Ben12]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.43 v6.1.0, 0.29 v5.5.0
% Syntax : Number of formulae : 76 ( 33 unt; 39 typ; 32 def)
% Number of atoms : 150 ( 36 equ; 0 cnn)
% Maximal formula atoms : 44 ( 4 avg)
% Number of connectives : 189 ( 5 ~; 5 |; 9 &; 160 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 183 ( 183 >; 0 *; 0 +; 0 <<)
% Number of symbols : 45 ( 43 usr; 6 con; 0-3 aty)
% Number of variables : 90 ( 49 ^; 34 !; 7 ?; 90 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Goedel translation of SYN045+1
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(r_type,type,
r: $i > $o ).
thf(q_type,type,
q: $i > $o ).
thf(p_type,type,
p: $i > $o ).
thf(pel13,conjecture,
mvalid @ ( mand @ ( mbox_s4 @ ( mimplies @ ( mor @ ( mbox_s4 @ p ) @ ( mand @ ( mbox_s4 @ q ) @ ( mbox_s4 @ r ) ) ) @ ( mand @ ( mor @ ( mbox_s4 @ p ) @ ( mbox_s4 @ q ) ) @ ( mor @ ( mbox_s4 @ p ) @ ( mbox_s4 @ r ) ) ) ) ) @ ( mbox_s4 @ ( mimplies @ ( mand @ ( mor @ ( mbox_s4 @ p ) @ ( mbox_s4 @ q ) ) @ ( mor @ ( mbox_s4 @ p ) @ ( mbox_s4 @ r ) ) ) @ ( mor @ ( mbox_s4 @ p ) @ ( mand @ ( mbox_s4 @ q ) @ ( mbox_s4 @ r ) ) ) ) ) ) ).
%------------------------------------------------------------------------------