TPTP Problem File: SYN044^4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN044^4 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Intuitionistic logic)
% Problem : Pelletier Problem 10
% Version : [Goe33] axioms.
% English :
% Refs : [Goe33] Goedel (1933), An Interpretation of the Intuitionistic
% : [Gol06] Goldblatt (2006), Mathematical Modal Logic: A View of
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% : [BP10] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben09]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v4.0.0
% Syntax : Number of formulae : 48 ( 20 unt; 23 typ; 19 def)
% Number of atoms : 93 ( 19 equ; 0 cnn)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 81 ( 3 ~; 1 |; 2 &; 73 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 98 ( 98 >; 0 *; 0 +; 0 <<)
% Number of symbols : 31 ( 29 usr; 7 con; 0-3 aty)
% Number of variables : 40 ( 31 ^; 7 !; 2 ?; 40 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This is an ILTP problem embedded in TH0
%------------------------------------------------------------------------------
include('Axioms/LCL010^0.ax').
%------------------------------------------------------------------------------
thf(p_type,type,
p: $i > $o ).
thf(q_type,type,
q: $i > $o ).
thf(r_type,type,
r: $i > $o ).
thf(pel10_1,axiom,
ivalid @ ( iimplies @ ( iatom @ q ) @ ( iatom @ r ) ) ).
thf(pel10_2,axiom,
ivalid @ ( iimplies @ ( iatom @ r ) @ ( iand @ ( iatom @ p ) @ ( iatom @ q ) ) ) ).
thf(pel10_3,axiom,
ivalid @ ( iimplies @ ( iatom @ p ) @ ( ior @ ( iatom @ q ) @ ( iatom @ r ) ) ) ).
thf(pel10,conjecture,
ivalid @ ( iequiv @ ( iatom @ p ) @ ( iatom @ q ) ) ).
%------------------------------------------------------------------------------