TPTP Problem File: SYN039-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN039-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Syntactic
% Problem : A challenge to resolution programs
% Version : Biased.
% English :
% Refs : [Lif89] Lifschitz (1989), What is the Inverse Method?
% Source : [OTTER]
% Names : lifsch.in [OTTER]
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.08 v8.2.0, 0.00 v7.0.0, 0.25 v6.3.0, 0.00 v3.3.0, 0.33 v3.2.0, 0.00 v2.7.0, 0.12 v2.6.0, 0.00 v2.1.0, 0.37 v2.0.0
% Syntax : Number of clauses : 27 ( 0 unt; 11 nHn; 7 RR)
% Number of literals : 81 ( 0 equ; 45 neg)
% Maximal clause size : 3 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 2-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 84 ( 21 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments : It is easily solved by Maslov's inverse method. "In a personal
% communication, Minc quotes one problem that was successfully
% solved by the program not later than 1968" [Lif89] p.14.
%--------------------------------------------------------------------------
% formula_list(sos).
% -(exists x exists x1 all y exists z exists z1
% ( ( -p(y,y) | p(x,x) | -s(z,x) ) &
% ( s(x,y) | -s(y,z) | q(z1,z1) ) &
% ( q(x1,y) | -q(y,z1) | s(x1,x1) ) )).
cnf(c_1,negated_conjecture,
( p(f1(X,X1),f1(X,X1))
| ~ s(X,f1(X,X1))
| ~ q(X1,f1(X,X1)) ) ).
cnf(c_2,negated_conjecture,
( p(f1(X,X1),f1(X,X1))
| ~ s(X,f1(X,X1))
| q(f1(X,X1),Z1) ) ).
cnf(c_3,negated_conjecture,
( p(f1(X,X1),f1(X,X1))
| ~ s(X,f1(X,X1))
| ~ s(X1,X1) ) ).
cnf(c_4,negated_conjecture,
( p(f1(X,X1),f1(X,X1))
| s(f1(X,X1),Z)
| ~ q(X1,f1(X,X1)) ) ).
cnf(c_5,negated_conjecture,
( p(f1(X,X1),f1(X,X1))
| s(f1(X,X1),Z)
| q(f1(X,X1),Z1) ) ).
cnf(c_6,negated_conjecture,
( p(f1(X,X1),f1(X,X1))
| s(f1(X,X1),Z)
| ~ s(X1,X1) ) ).
cnf(c_7,negated_conjecture,
( p(f1(X,X1),f1(X,X1))
| ~ q(Z1,Z1)
| ~ q(X1,f1(X,X1)) ) ).
cnf(c_8,negated_conjecture,
( p(f1(X,X1),f1(X,X1))
| ~ q(Z1,Z1)
| q(f1(X,X1),Z1) ) ).
cnf(c_9,negated_conjecture,
( p(f1(X,X1),f1(X,X1))
| ~ q(Z1,Z1)
| ~ s(X1,X1) ) ).
cnf(c_10,negated_conjecture,
( ~ p(X,X)
| ~ s(X,f1(X,X1))
| ~ q(X1,f1(X,X1)) ) ).
cnf(c_11,negated_conjecture,
( ~ p(X,X)
| ~ s(X,f1(X,X1))
| q(f1(X,X1),Z1) ) ).
cnf(c_12,negated_conjecture,
( ~ p(X,X)
| ~ s(X,f1(X,X1))
| ~ s(X1,X1) ) ).
cnf(c_13,negated_conjecture,
( ~ p(X,X)
| s(f1(X,X1),Z)
| ~ q(X1,f1(X,X1)) ) ).
cnf(c_14,negated_conjecture,
( ~ p(X,X)
| s(f1(X,X1),Z)
| q(f1(X,X1),Z1) ) ).
cnf(c_15,negated_conjecture,
( ~ p(X,X)
| s(f1(X,X1),Z)
| ~ s(X1,X1) ) ).
cnf(c_16,negated_conjecture,
( ~ p(X,X)
| ~ q(Z1,Z1)
| ~ q(X1,f1(X,X1)) ) ).
cnf(c_17,negated_conjecture,
( ~ p(X,X)
| ~ q(Z1,Z1)
| q(f1(X,X1),Z1) ) ).
cnf(c_18,negated_conjecture,
( ~ p(X,X)
| ~ q(Z1,Z1)
| ~ s(X1,X1) ) ).
cnf(c_19,negated_conjecture,
( s(Z,X)
| ~ s(X,f1(X,X1))
| ~ q(X1,f1(X,X1)) ) ).
cnf(c_20,negated_conjecture,
( s(Z,X)
| ~ s(X,f1(X,X1))
| q(f1(X,X1),Z1) ) ).
cnf(c_21,negated_conjecture,
( s(Z,X)
| ~ s(X,f1(X,X1))
| ~ s(X1,X1) ) ).
cnf(c_22,negated_conjecture,
( s(Z,X)
| s(f1(X,X1),Z)
| ~ q(X1,f1(X,X1)) ) ).
cnf(c_23,negated_conjecture,
( s(Z,X)
| s(f1(X,X1),Z)
| q(f1(X,X1),Z1) ) ).
cnf(c_24,negated_conjecture,
( s(Z,X)
| s(f1(X,X1),Z)
| ~ s(X1,X1) ) ).
cnf(c_25,negated_conjecture,
( s(Z,X)
| ~ q(Z1,Z1)
| ~ q(X1,f1(X,X1)) ) ).
cnf(c_26,negated_conjecture,
( s(Z,X)
| ~ q(Z1,Z1)
| q(f1(X,X1),Z1) ) ).
cnf(c_27,negated_conjecture,
( s(Z,X)
| ~ q(Z1,Z1)
| ~ s(X1,X1) ) ).
%--------------------------------------------------------------------------