TPTP Problem File: SYN037-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN037-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Syntactic
% Problem : Andrews Challenge Problem Variant
% Version : Especial.
% Theorem formulation : Different clausal form.
% English :
% Refs : [DeC79] DeChampeaux (1979), Sub-problem Finder and Instance Ch
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [AZ89] Angshuman & Zhang (1989), Andrews' Challenge Problem:
% : [Qua90] Quaife (1990), Andrews' Challenge Problem Revisited
% Source : [Qua90]
% Names : Theorem P [Qua90]
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.08 v8.2.0, 0.14 v8.1.0, 0.00 v7.4.0, 0.17 v7.0.0, 0.25 v6.3.0, 0.29 v6.2.0, 0.11 v6.1.0, 0.00 v5.1.0, 0.09 v5.0.0, 0.07 v4.1.0, 0.00 v4.0.0, 0.14 v3.4.0, 0.25 v3.3.0, 0.33 v3.2.0, 0.00 v3.1.0, 0.17 v2.7.0, 0.25 v2.6.0, 0.00 v2.5.0, 0.20 v2.4.0, 0.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 22 ( 0 unt; 13 nHn; 12 RR)
% Number of literals : 78 ( 0 equ; 38 neg)
% Maximal clause size : 4 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 3 prp; 0-1 aty)
% Number of functors : 10 ( 10 usr; 6 con; 0-1 aty)
% Number of variables : 20 ( 12 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
%--------------------------------------------------------------------------
cnf(clause_1,negated_conjecture,
( ~ m1
| ~ m3
| ~ p(X1)
| ~ p(fy(X1)) ) ).
cnf(clause_2,negated_conjecture,
( ~ m1
| ~ m3
| p(X1)
| p(fy(X1)) ) ).
cnf(clause_3,negated_conjecture,
( ~ m1
| ~ p(cx)
| m3
| p(Y4) ) ).
cnf(clause_4,negated_conjecture,
( ~ m1
| ~ p(Y5)
| m3
| p(cx) ) ).
cnf(clause_5,negated_conjecture,
( ~ m2
| ~ m3
| ~ q(cw)
| q(Z1) ) ).
cnf(clause_6,negated_conjecture,
( ~ m2
| ~ m3
| ~ q(Z)
| q(cw) ) ).
cnf(clause_7,negated_conjecture,
( ~ m2
| ~ q(W2)
| ~ q(fz5(W2))
| m3 ) ).
cnf(clause_8,negated_conjecture,
( ~ m2
| m3
| q(W2)
| q(fz5(W2)) ) ).
cnf(clause_9,negated_conjecture,
( ~ m3
| ~ p(cx)
| m1
| p(Y1) ) ).
cnf(clause_10,negated_conjecture,
( ~ m3
| ~ p(Y2)
| m1
| p(cx) ) ).
cnf(clause_11,negated_conjecture,
( ~ m3
| ~ q(W1)
| ~ q(fz2(W1))
| m2 ) ).
cnf(clause_12,negated_conjecture,
( ~ m3
| m2
| q(W1)
| q(fz2(W1)) ) ).
cnf(clause_13,negated_conjecture,
( ~ p(X2)
| ~ p(fy3(X2))
| m1
| m3 ) ).
cnf(clause_14,negated_conjecture,
( ~ q(cw)
| m2
| m3
| q(Z4) ) ).
cnf(clause_15,negated_conjecture,
( ~ q(Z3)
| m2
| m3
| q(cw) ) ).
cnf(clause_16,negated_conjecture,
( m1
| m3
| p(X2)
| p(fy3(X2)) ) ).
cnf(clause_17,negated_conjecture,
( ~ m1
| ~ q(U1)
| q(Uu1) ) ).
cnf(clause_18,negated_conjecture,
( ~ m2
| ~ p(V1)
| p(Vv1) ) ).
cnf(clause_19,negated_conjecture,
( ~ p(cvv)
| m2 ) ).
cnf(clause_20,negated_conjecture,
( ~ q(cuu)
| m1 ) ).
cnf(clause_21,negated_conjecture,
( m2
| p(cv) ) ).
cnf(clause_22,negated_conjecture,
( m1
| q(cu) ) ).
%--------------------------------------------------------------------------