TPTP Problem File: SYN036-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN036-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Syntactic
% Problem : Andrews Challenge Problem
% Version : Especial.
% Theorem formulation : Different clausal form.
% English :
% Refs : [DeC79] DeChampeaux (1979), Sub-problem Finder and Instance Ch
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [AZ89] Angshuman & Zhang (1989), Andrews' Challenge Problem:
% : [Qua90] Quaife (1990), Andrews' Challenge Problem Revisited
% Source : [Qua90]
% Names : Theorem A [Qua90]
% Status : Unsatisfiable
% Rating : 0.18 v9.0.0, 0.17 v8.2.0, 0.14 v8.1.0, 0.00 v7.4.0, 0.17 v7.1.0, 0.33 v7.0.0, 0.25 v6.3.0, 0.14 v6.2.0, 0.00 v5.4.0, 0.10 v5.2.0, 0.00 v5.1.0, 0.09 v5.0.0, 0.14 v4.1.0, 0.12 v4.0.1, 0.00 v4.0.0, 0.14 v3.4.0, 0.25 v3.3.0, 0.33 v3.2.0, 0.00 v3.1.0, 0.33 v2.7.0, 0.12 v2.6.0, 0.00 v2.5.0, 0.20 v2.4.0, 0.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 32 ( 0 unt; 25 nHn; 6 RR)
% Number of literals : 168 ( 0 equ; 86 neg)
% Maximal clause size : 6 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 1-1 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-1 aty)
% Number of variables : 81 ( 42 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
%--------------------------------------------------------------------------
cnf(clause_1,negated_conjecture,
( ~ p(cx)
| ~ q(cw)
| p(Y3)
| q(Z3) ) ).
cnf(clause_2,negated_conjecture,
( ~ p(cx)
| ~ q(Z4)
| p(Y3)
| q(cw) ) ).
cnf(clause_3,negated_conjecture,
( ~ p(Y4)
| ~ q(cw)
| p(cx)
| q(Z3) ) ).
cnf(clause_4,negated_conjecture,
( ~ p(Y4)
| ~ q(Z4)
| p(cx)
| q(cw) ) ).
cnf(clause_5,negated_conjecture,
( ~ p(cx)
| ~ p(X7)
| ~ p(fy5(X7))
| ~ q(cw)
| q(Z3) ) ).
cnf(clause_6,negated_conjecture,
( ~ p(cx)
| ~ p(X7)
| ~ p(fy5(X7))
| ~ q(Z4)
| q(cw) ) ).
cnf(clause_7,negated_conjecture,
( ~ p(cx)
| ~ q(cw)
| ~ q(W9)
| ~ q(fz5(W9))
| p(Y3) ) ).
cnf(clause_8,negated_conjecture,
( ~ p(cx)
| ~ q(W2)
| p(Y1)
| q(W4)
| q(fz(W4)) ) ).
cnf(clause_9,negated_conjecture,
( ~ p(cx)
| ~ q(W3)
| ~ q(fz(W3))
| p(Y1)
| q(W4) ) ).
cnf(clause_10,negated_conjecture,
( ~ p(cx)
| p(Y1)
| q(cw)
| q(W3)
| q(fz(W3)) ) ).
cnf(clause_11,negated_conjecture,
( ~ p(X5)
| ~ p(fy(X5))
| ~ q(cw)
| p(X2)
| q(Z1) ) ).
cnf(clause_12,negated_conjecture,
( ~ p(X5)
| ~ q(cw)
| p(X2)
| p(fy(X2))
| q(Z1) ) ).
cnf(clause_13,negated_conjecture,
( ~ p(X2)
| ~ p(fy5(X9))
| ~ q(Z4)
| p(X8)
| q(cw) ) ).
cnf(clause_14,negated_conjecture,
( ~ p(X9)
| ~ q(Z4)
| p(X8)
| p(fy5(X8))
| q(cw) ) ).
cnf(clause_15,negated_conjecture,
( ~ p(Y2)
| p(cx)
| q(cw)
| q(W3)
| q(fz(W3)) ) ).
cnf(clause_16,negated_conjecture,
( ~ p(Y4)
| ~ q(cw)
| ~ q(W9)
| ~ q(fz5(W9))
| p(cx) ) ).
cnf(clause_17,negated_conjecture,
( ~ p(Y4)
| ~ q(W6)
| p(cx)
| q(W9)
| q(fz5(W9)) ) ).
cnf(clause_18,negated_conjecture,
( ~ p(Y4)
| ~ q(W9)
| ~ q(fz5(W9))
| p(cx)
| q(W10) ) ).
cnf(clause_19,negated_conjecture,
( ~ q(cw)
| p(cx)
| p(X1)
| p(fy(X1))
| q(Z1) ) ).
cnf(clause_20,negated_conjecture,
( ~ q(Z2)
| p(cx)
| p(X1)
| p(fy(X1))
| q(cw) ) ).
cnf(clause_21,negated_conjecture,
( ~ p(cx)
| ~ p(X1)
| ~ p(fy(X1))
| ~ q(W3)
| ~ q(fz(W3))
| q(cw) ) ).
cnf(clause_22,negated_conjecture,
( ~ p(cx)
| ~ p(X1)
| ~ p(fy(X1))
| q(cw)
| q(W3)
| q(fz(W3)) ) ).
cnf(clause_23,negated_conjecture,
( ~ p(cx)
| ~ p(X7)
| ~ p(fy5(X7))
| ~ q(cw)
| ~ q(W9)
| ~ q(fz5(W9)) ) ).
cnf(clause_24,negated_conjecture,
( ~ p(X1)
| ~ p(fy(X1))
| ~ q(cw)
| ~ q(W3)
| ~ q(fz(W3))
| p(cx) ) ).
cnf(clause_25,negated_conjecture,
( ~ p(X4)
| ~ p(fy(X4))
| ~ q(W1)
| p(X2)
| q(W4)
| q(fz(W4)) ) ).
cnf(clause_26,negated_conjecture,
( ~ p(X4)
| ~ p(fy(X4))
| ~ q(W3)
| ~ q(fz(W3))
| p(X2)
| q(W4) ) ).
cnf(clause_27,negated_conjecture,
( ~ p(X4)
| ~ q(W1)
| p(X2)
| p(fy(X2))
| q(W4)
| q(fz(W4)) ) ).
cnf(clause_28,negated_conjecture,
( ~ p(X4)
| ~ q(W3)
| ~ q(fz(W3))
| p(X2)
| p(fy(X2))
| q(W4) ) ).
cnf(clause_29,negated_conjecture,
( ~ p(X7)
| ~ p(fy5(X7))
| p(cx)
| q(cw)
| q(W9)
| q(fz5(W9)) ) ).
cnf(clause_30,negated_conjecture,
( ~ q(cw)
| ~ q(W3)
| ~ q(fz(W3))
| p(cx)
| p(X1)
| p(fy(X1)) ) ).
cnf(clause_31,negated_conjecture,
( ~ q(W9)
| ~ q(fz5(W9))
| p(cx)
| p(X7)
| p(fy5(X7))
| q(cw) ) ).
cnf(clause_32,negated_conjecture,
( p(cx)
| p(X7)
| p(fy5(X7))
| q(cw)
| q(W9)
| q(fz5(W9)) ) ).
%--------------------------------------------------------------------------