TPTP Problem File: SYN036-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN036-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Syntactic
% Problem : Andrews Challenge Problem
% Version : Especial.
% Theorem formulation : Different clausal form.
% English :
% Refs : [DeC79] DeChampeaux (1979), Sub-problem Finder and Instance Ch
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [AZ89] Angshuman & Zhang (1989), Andrews' Challenge Problem:
% Source : [AZ89]
% Names : Problem 9 [AZ89]
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.08 v8.2.0, 0.14 v8.1.0, 0.00 v7.1.0, 0.17 v7.0.0, 0.12 v6.3.0, 0.14 v6.2.0, 0.00 v5.1.0, 0.09 v5.0.0, 0.07 v4.1.0, 0.00 v4.0.0, 0.14 v3.4.0, 0.25 v3.3.0, 0.33 v3.2.0, 0.00 v3.1.0, 0.17 v2.7.0, 0.25 v2.6.0, 0.00 v2.5.0, 0.20 v2.4.0, 0.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 36 ( 0 unt; 11 nHn; 30 RR)
% Number of literals : 104 ( 0 equ; 52 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 12 ( 12 usr; 8 prp; 0-1 aty)
% Number of functors : 8 ( 8 usr; 6 con; 0-1 aty)
% Number of variables : 18 ( 10 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
%--------------------------------------------------------------------------
cnf(clause_1,negated_conjecture,
( ~ n2
| ~ n9
| ~ n6
| ~ n10 ) ).
cnf(clause_2,negated_conjecture,
( ~ n2
| ~ n9
| n6
| n10 ) ).
cnf(clause_3,negated_conjecture,
( n2
| n9
| ~ n6
| ~ n10 ) ).
cnf(clause_4,negated_conjecture,
( n2
| n9
| n6
| n10 ) ).
cnf(clause_5,negated_conjecture,
( ~ n2
| n9
| ~ n6
| n10 ) ).
cnf(clause_6,negated_conjecture,
( ~ n2
| n9
| n6
| ~ n10 ) ).
cnf(clause_7,negated_conjecture,
( n2
| ~ n9
| ~ n6
| n10 ) ).
cnf(clause_8,negated_conjecture,
( n2
| ~ n9
| n6
| ~ n10 ) ).
cnf(clause_9,negated_conjecture,
( ~ p(s8)
| n8 ) ).
cnf(clause_10,negated_conjecture,
( ~ n8
| p(X8) ) ).
cnf(clause_11,negated_conjecture,
( ~ p(X7)
| n7 ) ).
cnf(clause_12,negated_conjecture,
( ~ n7
| p(s7) ) ).
cnf(clause_13,negated_conjecture,
( ~ n5(X6)
| n6 ) ).
cnf(clause_14,negated_conjecture,
( ~ n6
| n5(s6) ) ).
cnf(clause_15,negated_conjecture,
( ~ q(X)
| ~ q(s5(X))
| n5(X) ) ).
cnf(clause_16,negated_conjecture,
( q(X)
| q(s5(X))
| n5(X) ) ).
cnf(clause_17,negated_conjecture,
( ~ n5(X)
| ~ q(X)
| q(X5) ) ).
cnf(clause_18,negated_conjecture,
( ~ n5(X)
| q(X)
| ~ q(X5) ) ).
cnf(clause_19,negated_conjecture,
( ~ q(s4)
| n4 ) ).
cnf(clause_20,negated_conjecture,
( ~ n4
| q(X4) ) ).
cnf(clause_21,negated_conjecture,
( ~ q(X3)
| n3 ) ).
cnf(clause_22,negated_conjecture,
( ~ n3
| q(s3) ) ).
cnf(clause_23,negated_conjecture,
( ~ n1(X2)
| n2 ) ).
cnf(clause_24,negated_conjecture,
( ~ n2
| n1(s2) ) ).
cnf(clause_25,negated_conjecture,
( ~ p(X)
| ~ p(s1(X))
| n1(X) ) ).
cnf(clause_26,negated_conjecture,
( p(X)
| p(s1(X))
| n1(X) ) ).
cnf(clause_27,negated_conjecture,
( ~ n1(X)
| ~ p(X)
| p(X1) ) ).
cnf(clause_28,negated_conjecture,
( ~ n1(X)
| p(X)
| ~ p(X1) ) ).
cnf(clause_29,negated_conjecture,
( ~ n3
| ~ n4
| n9 ) ).
cnf(clause_30,negated_conjecture,
( n3
| n4
| n9 ) ).
cnf(clause_31,negated_conjecture,
( ~ n3
| n4
| ~ n9 ) ).
cnf(clause_32,negated_conjecture,
( n3
| ~ n4
| ~ n9 ) ).
cnf(clause_33,negated_conjecture,
( ~ n7
| ~ n8
| n10 ) ).
cnf(clause_34,negated_conjecture,
( n7
| n8
| n10 ) ).
cnf(clause_35,negated_conjecture,
( ~ n7
| n8
| ~ n10 ) ).
cnf(clause_36,negated_conjecture,
( n7
| ~ n8
| ~ n10 ) ).
%--------------------------------------------------------------------------