TPTP Problem File: SYN015-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN015-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Syntactic
% Problem : A problem in quantification theory
% Version : [Wan65] axioms : Reduced & Augmented > Especial.
% Theorem formulation : Modified.
% English :
% Refs : [Wos65] Wos (1965), Unpublished Note
% : [Wan65] Wang (1965), Formalization and Automatic Theorem-Provi
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% Source : [SPRFN]
% Names : Problem 33 [Wos65]
% : wos33 [WM76]
% Status : Unsatisfiable
% Rating : 0.00 v7.4.0, 0.17 v7.0.0, 0.00 v6.3.0, 0.14 v6.2.0, 0.00 v5.5.0, 0.12 v5.4.0, 0.20 v5.2.0, 0.00 v5.1.0, 0.09 v5.0.0, 0.07 v4.1.0, 0.12 v4.0.1, 0.00 v4.0.0, 0.14 v3.4.0, 0.00 v3.1.0, 0.17 v2.7.0, 0.00 v2.6.0, 0.33 v2.5.0, 0.20 v2.4.0, 0.00 v2.2.1, 0.25 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 26 ( 7 unt; 13 nHn; 23 RR)
% Number of literals : 70 ( 0 equ; 30 neg)
% Maximal clause size : 6 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-1 aty)
% Number of variables : 29 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
%--------------------------------------------------------------------------
cnf(reflexivityish,axiom,
equalish(X,X) ).
cnf(symmetryish,axiom,
( ~ equalish(X,Y)
| equalish(Y,X) ) ).
cnf(transitivityish,axiom,
( ~ equalish(X,Y)
| ~ equalish(Y,Z)
| equalish(X,Z) ) ).
cnf(element_substitutionish1,axiom,
( ~ equalish(A,B)
| ~ element(C,A)
| element(C,B) ) ).
cnf(element_substitutionish2,axiom,
( ~ element(A,B)
| ~ equalish(A,C)
| element(C,B) ) ).
cnf(c_3,negated_conjecture,
( ~ element(A,a)
| equalish(A,k)
| equalish(A,a) ) ).
cnf(c_4,negated_conjecture,
( ~ equalish(A,k)
| element(A,a)
| equalish(A,a) ) ).
cnf(c_5,negated_conjecture,
( ~ equalish(f(A),m)
| ~ element(A,m)
| equalish(A,m) ) ).
cnf(c_6,negated_conjecture,
( ~ equalish(f(A),A)
| ~ element(A,m)
| equalish(A,m) ) ).
cnf(c_7,negated_conjecture,
( element(A,f(A))
| ~ element(A,m)
| equalish(A,m) ) ).
cnf(c_8,negated_conjecture,
( element(f(A),A)
| ~ element(A,m)
| equalish(A,m) ) ).
cnf(c_9,negated_conjecture,
( ~ element(A,B)
| ~ element(B,A)
| equalish(A,B)
| equalish(A,m)
| element(B,m)
| equalish(B,m) ) ).
cnf(c_10,negated_conjecture,
( ~ equalish(g(A),n)
| element(A,n)
| equalish(A,n) ) ).
cnf(c_11,negated_conjecture,
( ~ equalish(g(A),A)
| element(A,n)
| equalish(A,n) ) ).
cnf(c_12,negated_conjecture,
( element(A,g(A))
| element(A,n)
| equalish(A,n) ) ).
cnf(c_13,negated_conjecture,
( element(g(A),A)
| element(A,n)
| equalish(A,n) ) ).
cnf(c_14,negated_conjecture,
( ~ element(A,B)
| ~ element(B,A)
| equalish(A,B)
| equalish(A,n)
| ~ element(B,n)
| equalish(B,n) ) ).
cnf(c_15,negated_conjecture,
( ~ equalish(A,m)
| element(A,k)
| equalish(A,k) ) ).
cnf(c_16,negated_conjecture,
( ~ equalish(A,n)
| element(A,k)
| equalish(A,k) ) ).
cnf(c_17,negated_conjecture,
( ~ element(A,k)
| equalish(A,n)
| equalish(A,m)
| equalish(A,k) ) ).
cnf(c_18,negated_conjecture,
~ equalish(n,a) ).
cnf(c_19,negated_conjecture,
~ equalish(m,n) ).
%----This is the only difference from wos32 - SYN014-1.p
cnf(c_20,negated_conjecture,
~ equalish(n,k) ).
cnf(c_21,negated_conjecture,
~ equalish(m,a) ).
cnf(c_22,negated_conjecture,
~ equalish(k,a) ).
cnf(c_23,negated_conjecture,
equalish(m,k) ).
%--------------------------------------------------------------------------