TPTP Problem File: SYN014-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN014-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Syntactic
% Problem : A problem in quantification theory
% Version : [Wan65] axioms : Especial.
% English :
% Refs : [Wan65] Wang (1965), Formalization and Automatic Theorem-Provi
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [MOW76]
% Names : ExQ2 [Wan65]
% : EXQ2 [MOW76]
% : exq2.ver1.in [ANL]
% : exq2.ver2.in [ANL]
% Status : Unsatisfiable
% Rating : 0.10 v9.0.0, 0.15 v8.2.0, 0.10 v8.1.0, 0.05 v7.5.0, 0.11 v7.4.0, 0.12 v7.3.0, 0.17 v7.1.0, 0.08 v7.0.0, 0.20 v6.4.0, 0.13 v6.3.0, 0.18 v6.2.0, 0.20 v6.1.0, 0.21 v6.0.0, 0.30 v5.3.0, 0.33 v5.2.0, 0.25 v5.1.0, 0.29 v4.1.0, 0.15 v4.0.1, 0.09 v4.0.0, 0.18 v3.7.0, 0.20 v3.5.0, 0.18 v3.4.0, 0.25 v3.3.0, 0.29 v3.2.0, 0.31 v3.1.0, 0.45 v2.7.0, 0.42 v2.6.0, 0.40 v2.5.0, 0.50 v2.4.0, 0.22 v2.3.0, 0.44 v2.2.1, 0.67 v2.2.0, 0.89 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 17 ( 1 unt; 14 nHn; 15 RR)
% Number of literals : 55 ( 32 equ; 19 neg)
% Maximal clause size : 6 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-1 aty)
% Number of variables : 17 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
cnf(c_1,negated_conjecture,
m != n ).
cnf(c_2,negated_conjecture,
( n = k
| m = k ) ).
cnf(c_3,negated_conjecture,
( Y = j
| Y != k
| element(Y,j) ) ).
cnf(c_4,negated_conjecture,
( Y = j
| Y = k
| ~ element(Y,j) ) ).
cnf(c_5,negated_conjecture,
( Y = m
| ~ element(Y,m)
| f(Y) != m ) ).
cnf(c_6,negated_conjecture,
( Y = m
| ~ element(Y,m)
| f(Y) != Y ) ).
cnf(c_7,negated_conjecture,
( Y = m
| ~ element(Y,m)
| element(Y,f(Y)) ) ).
cnf(c_8,negated_conjecture,
( Y = m
| ~ element(Y,m)
| element(f(Y),Y) ) ).
cnf(c_9,negated_conjecture,
( Y = m
| element(Y,m)
| V1 = m
| V1 = Y
| ~ element(Y,V1)
| ~ element(V1,Y) ) ).
cnf(c_10,negated_conjecture,
( Y = n
| element(Y,n)
| g(Y) != n ) ).
cnf(c_11,negated_conjecture,
( Y = n
| element(Y,n)
| g(Y) != Y ) ).
cnf(c_12,negated_conjecture,
( Y = n
| element(Y,n)
| element(Y,g(Y)) ) ).
cnf(c_13,negated_conjecture,
( Y = n
| element(Y,n)
| element(g(Y),Y) ) ).
cnf(c_14,negated_conjecture,
( Y = n
| ~ element(Y,n)
| V = n
| V = Y
| ~ element(Y,V)
| ~ element(V,Y) ) ).
cnf(c_15,negated_conjecture,
( Y = k
| Y != m
| element(Y,k) ) ).
cnf(c_16,negated_conjecture,
( Y = k
| Y != n
| element(Y,k) ) ).
cnf(c_17,negated_conjecture,
( Y = k
| Y = m
| Y = n
| ~ element(Y,k) ) ).