TPTP Problem File: SYN010-1.005.005.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN010-1.005.005 : TPTP v9.0.0. Released v1.0.0.
% Domain : Syntactic
% Problem : Example for Proposition 5.2 in [LMG94]
% Version : Biased.
% English : Example to show that connection tableaux with factorization
% cannot polynomially simulate simulate connection tableaux with
% folding up.
% Refs : [LMG94] Letz et al. (1994), Controlled Integration of the Cut
% Source : [LMG94]
% Names : Example 5.1 [LMG94]
% Status : Unsatisfiable
% Rating : 0.00 v2.1.0
% Syntax : Number of clauses : 27 ( 6 unt; 0 nHn; 27 RR)
% Number of literals : 132 ( 0 equ; 106 neg)
% Maximal clause size : 6 ( 4 avg)
% Maximal term depth : 0 ( 0 avg)
% Number of predicates : 26 ( 26 usr; 26 prp; 0-0 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 0 ( 0 sgn)
% SPC : CNF_UNS_PRP
% Comments : Biased towards folding up.
% : tptp2X: -f tptp -s5:5 SYN010-1.g
%--------------------------------------------------------------------------
cnf(clause_1,negated_conjecture,
~ p_0 ).
cnf(clause_2,negated_conjecture,
( p_0
| ~ p_1_1
| ~ p_1_2
| ~ p_1_3
| ~ p_1_4
| ~ p_1_5 ) ).
cnf(clause_3,negated_conjecture,
( p_1_1
| ~ p_2_1
| ~ p_2_2
| ~ p_2_3
| ~ p_2_4
| ~ p_2_5 ) ).
cnf(clause_4,negated_conjecture,
( p_1_2
| ~ p_2_1
| ~ p_2_2
| ~ p_2_3
| ~ p_2_4
| ~ p_2_5 ) ).
cnf(clause_5,negated_conjecture,
( p_1_3
| ~ p_2_1
| ~ p_2_2
| ~ p_2_3
| ~ p_2_4
| ~ p_2_5 ) ).
cnf(clause_6,negated_conjecture,
( p_1_4
| ~ p_2_1
| ~ p_2_2
| ~ p_2_3
| ~ p_2_4
| ~ p_2_5 ) ).
cnf(clause_7,negated_conjecture,
( p_1_5
| ~ p_2_1
| ~ p_2_2
| ~ p_2_3
| ~ p_2_4
| ~ p_2_5 ) ).
cnf(clause_8,negated_conjecture,
( p_2_1
| ~ p_3_1
| ~ p_3_2
| ~ p_3_3
| ~ p_3_4
| ~ p_3_5 ) ).
cnf(clause_9,negated_conjecture,
( p_2_2
| ~ p_3_1
| ~ p_3_2
| ~ p_3_3
| ~ p_3_4
| ~ p_3_5 ) ).
cnf(clause_10,negated_conjecture,
( p_2_3
| ~ p_3_1
| ~ p_3_2
| ~ p_3_3
| ~ p_3_4
| ~ p_3_5 ) ).
cnf(clause_11,negated_conjecture,
( p_2_4
| ~ p_3_1
| ~ p_3_2
| ~ p_3_3
| ~ p_3_4
| ~ p_3_5 ) ).
cnf(clause_12,negated_conjecture,
( p_2_5
| ~ p_3_1
| ~ p_3_2
| ~ p_3_3
| ~ p_3_4
| ~ p_3_5 ) ).
cnf(clause_13,negated_conjecture,
( p_3_1
| ~ p_4_1
| ~ p_4_2
| ~ p_4_3
| ~ p_4_4
| ~ p_4_5 ) ).
cnf(clause_14,negated_conjecture,
( p_3_2
| ~ p_4_1
| ~ p_4_2
| ~ p_4_3
| ~ p_4_4
| ~ p_4_5 ) ).
cnf(clause_15,negated_conjecture,
( p_3_3
| ~ p_4_1
| ~ p_4_2
| ~ p_4_3
| ~ p_4_4
| ~ p_4_5 ) ).
cnf(clause_16,negated_conjecture,
( p_3_4
| ~ p_4_1
| ~ p_4_2
| ~ p_4_3
| ~ p_4_4
| ~ p_4_5 ) ).
cnf(clause_17,negated_conjecture,
( p_3_5
| ~ p_4_1
| ~ p_4_2
| ~ p_4_3
| ~ p_4_4
| ~ p_4_5 ) ).
cnf(clause_18,negated_conjecture,
( p_4_1
| ~ p_5_1
| ~ p_5_2
| ~ p_5_3
| ~ p_5_4
| ~ p_5_5 ) ).
cnf(clause_19,negated_conjecture,
( p_4_2
| ~ p_5_1
| ~ p_5_2
| ~ p_5_3
| ~ p_5_4
| ~ p_5_5 ) ).
cnf(clause_20,negated_conjecture,
( p_4_3
| ~ p_5_1
| ~ p_5_2
| ~ p_5_3
| ~ p_5_4
| ~ p_5_5 ) ).
cnf(clause_21,negated_conjecture,
( p_4_4
| ~ p_5_1
| ~ p_5_2
| ~ p_5_3
| ~ p_5_4
| ~ p_5_5 ) ).
cnf(clause_22,negated_conjecture,
( p_4_5
| ~ p_5_1
| ~ p_5_2
| ~ p_5_3
| ~ p_5_4
| ~ p_5_5 ) ).
cnf(clause_23,negated_conjecture,
p_5_1 ).
cnf(clause_24,negated_conjecture,
p_5_2 ).
cnf(clause_25,negated_conjecture,
p_5_3 ).
cnf(clause_26,negated_conjecture,
p_5_4 ).
cnf(clause_27,negated_conjecture,
p_5_5 ).
%--------------------------------------------------------------------------