TPTP Problem File: SYN007^4.014.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN007^4.014 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Intuitionistic logic)
% Problem : Pelletier Problem 71
% Version : [Goe33] axioms.
% English :
% Refs : [Goe33] Goedel (1933), An Interpretation of the Intuitionistic
% : [Gol06] Goldblatt (2006), Mathematical Modal Logic: A View of
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% : [BP10] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben09]
% Names :
% Status : CounterSatisfiable
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 56 ( 20 unt; 34 typ; 19 def)
% Number of atoms : 147 ( 19 equ; 0 cnn)
% Maximal formula atoms : 84 ( 6 avg)
% Number of connectives : 138 ( 3 ~; 1 |; 2 &; 130 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 31 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 109 ( 109 >; 0 *; 0 +; 0 <<)
% Number of symbols : 39 ( 37 usr; 4 con; 0-3 aty)
% Number of variables : 40 ( 31 ^; 7 !; 2 ?; 40 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This is an ILTP problem embedded in TH0
% : In classical logic this is a Theorem.
%------------------------------------------------------------------------------
include('Axioms/LCL010^0.ax').
%------------------------------------------------------------------------------
thf(p_1_type,type,
p_1: $i > $o ).
thf(p_10_type,type,
p_10: $i > $o ).
thf(p_11_type,type,
p_11: $i > $o ).
thf(p_12_type,type,
p_12: $i > $o ).
thf(p_13_type,type,
p_13: $i > $o ).
thf(p_14_type,type,
p_14: $i > $o ).
thf(p_2_type,type,
p_2: $i > $o ).
thf(p_3_type,type,
p_3: $i > $o ).
thf(p_4_type,type,
p_4: $i > $o ).
thf(p_5_type,type,
p_5: $i > $o ).
thf(p_6_type,type,
p_6: $i > $o ).
thf(p_7_type,type,
p_7: $i > $o ).
thf(p_8_type,type,
p_8: $i > $o ).
thf(p_9_type,type,
p_9: $i > $o ).
thf(prove_this,conjecture,
ivalid @ ( iequiv @ ( iatom @ p_1 ) @ ( iequiv @ ( iatom @ p_2 ) @ ( iequiv @ ( iatom @ p_3 ) @ ( iequiv @ ( iatom @ p_4 ) @ ( iequiv @ ( iatom @ p_5 ) @ ( iequiv @ ( iatom @ p_6 ) @ ( iequiv @ ( iatom @ p_7 ) @ ( iequiv @ ( iatom @ p_8 ) @ ( iequiv @ ( iatom @ p_9 ) @ ( iequiv @ ( iatom @ p_10 ) @ ( iequiv @ ( iatom @ p_11 ) @ ( iequiv @ ( iatom @ p_12 ) @ ( iequiv @ ( iatom @ p_13 ) @ ( iequiv @ ( iatom @ p_14 ) @ ( iequiv @ ( iatom @ p_1 ) @ ( iequiv @ ( iatom @ p_2 ) @ ( iequiv @ ( iatom @ p_3 ) @ ( iequiv @ ( iatom @ p_4 ) @ ( iequiv @ ( iatom @ p_5 ) @ ( iequiv @ ( iatom @ p_6 ) @ ( iequiv @ ( iatom @ p_7 ) @ ( iequiv @ ( iatom @ p_8 ) @ ( iequiv @ ( iatom @ p_9 ) @ ( iequiv @ ( iatom @ p_10 ) @ ( iequiv @ ( iatom @ p_11 ) @ ( iequiv @ ( iatom @ p_12 ) @ ( iequiv @ ( iatom @ p_13 ) @ ( iatom @ p_14 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------