TPTP Problem File: SYN004-1.007.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN004-1.007 : TPTP v9.0.0. Released v1.0.0.
% Domain : Syntactic
% Problem : Implications that form a contradiction
% Version : Biased.
% English : P1 & Q1 -> P2 P1 & Q1 -> Q2 :
% P2 & Q2 -> P3 P2 & Q2 -> Q3 :
% ...... ...... :
% Pk-1 & Qk-1 ->Pk Pk-1 & Qk-1 -> Qk :
% P1 Q1 ~Pk v ~Qk :
% : The size is k, in the above.
% Refs : [Pla82] Plaisted (1982), A Simplified Problem Reduction Format
% Source : [Pla82]
% Names : Problem 5.3 [Pla82]
% Status : Unsatisfiable
% Rating : 0.00 v2.1.0
% Syntax : Number of clauses : 15 ( 2 unt; 0 nHn; 15 RR)
% Number of literals : 40 ( 0 equ; 26 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 0 ( 0 avg)
% Number of predicates : 14 ( 14 usr; 14 prp; 0-0 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 0 ( 0 sgn)
% SPC : CNF_UNS_PRP
% Comments : "This set of clauses can cause the following strategies to
% generate minimal length proofs having length exponential in k:
% SL-resolution, locking resolution with a bad choice of indices.
% However, all of the following strategies can always generate
% proofs polynomial in the size of S if S is an inconsistent set
% of propositional Horn clauses: all-negative resolution,
% set-of-support strategy, ancestry-filter form, and input
% resolution." [Pla82] p.244.
% : tptp2X: -f tptp -s7 SYN004-1.g
%--------------------------------------------------------------------------
cnf(pqp_1,negated_conjecture,
( ~ p_1
| ~ q_1
| p_2 ) ).
cnf(pqp_2,negated_conjecture,
( ~ p_2
| ~ q_2
| p_3 ) ).
cnf(pqp_3,negated_conjecture,
( ~ p_3
| ~ q_3
| p_4 ) ).
cnf(pqp_4,negated_conjecture,
( ~ p_4
| ~ q_4
| p_5 ) ).
cnf(pqp_5,negated_conjecture,
( ~ p_5
| ~ q_5
| p_6 ) ).
cnf(pqp_6,negated_conjecture,
( ~ p_6
| ~ q_6
| p_7 ) ).
cnf(pqq_1,negated_conjecture,
( ~ p_1
| ~ q_1
| q_2 ) ).
cnf(pqq_2,negated_conjecture,
( ~ p_2
| ~ q_2
| q_3 ) ).
cnf(pqq_3,negated_conjecture,
( ~ p_3
| ~ q_3
| q_4 ) ).
cnf(pqq_4,negated_conjecture,
( ~ p_4
| ~ q_4
| q_5 ) ).
cnf(pqq_5,negated_conjecture,
( ~ p_5
| ~ q_5
| q_6 ) ).
cnf(pqq_6,negated_conjecture,
( ~ p_6
| ~ q_6
| q_7 ) ).
cnf(base_1,negated_conjecture,
p_1 ).
cnf(base_2,negated_conjecture,
q_1 ).
cnf(base_3,negated_conjecture,
( ~ p_7
| ~ q_7 ) ).
%--------------------------------------------------------------------------