TPTP Problem File: SYN001^4.001.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN001^4.001 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Intuitionistic logic)
% Problem : Pelletier 2
% Version : [Goe33] axioms.
% English :
% Refs : [Goe33] Goedel (1933), An Interpretation of the Intuitionistic
% : [Gol06] Goldblatt (2006), Mathematical Modal Logic: A View of
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% : [BP10] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben09]
% Names : SYJ212+1.001 [ROK06]
% Status : CounterSatisfiable
% Rating : 0.67 v9.0.0, 0.75 v8.2.0, 1.00 v8.1.0, 0.60 v7.5.0, 0.40 v7.4.0, 0.50 v7.2.0, 0.33 v6.4.0, 0.67 v6.3.0, 0.33 v5.4.0, 1.00 v5.0.0, 0.33 v4.1.0, 0.00 v4.0.0
% Syntax : Number of formulae : 43 ( 20 unt; 21 typ; 19 def)
% Number of atoms : 71 ( 19 equ; 0 cnn)
% Maximal formula atoms : 8 ( 3 avg)
% Number of connectives : 62 ( 3 ~; 1 |; 2 &; 54 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 96 ( 96 >; 0 *; 0 +; 0 <<)
% Number of symbols : 27 ( 25 usr; 5 con; 0-3 aty)
% Number of variables : 40 ( 31 ^; 7 !; 2 ?; 40 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This is an ILTP problem embedded in TH0
% : In classical logic this is a Theorem.
%------------------------------------------------------------------------------
include('Axioms/LCL010^0.ax').
%------------------------------------------------------------------------------
thf(p_type,type,
p: $i > $o ).
thf(pel2,conjecture,
ivalid @ ( iequiv @ ( inot @ ( inot @ ( iatom @ p ) ) ) @ ( iatom @ p ) ) ).
%------------------------------------------------------------------------------