TPTP Problem File: SYN000_5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN000_5 : TPTP v9.0.0. Bugfixed v5.5.1.
% Domain : Syntactic
% Problem : TF0 syntax with arithmetic
% Version : Biased.
% English :
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.62 v7.5.0, 0.60 v7.4.0, 0.62 v7.3.0, 0.67 v7.0.0, 0.57 v6.4.0, 0.33 v6.3.0, 0.71 v6.2.0, 1.00 v6.0.0
% Syntax : Number of formulae : 83 ( 70 unt; 6 typ; 0 def)
% Number of atoms : 91 ( 4 equ)
% Maximal formula atoms : 7 ( 1 avg)
% Number of connectives : 14 ( 0 ~; 10 |; 1 &)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 196 ( 19 atm; 54 fun; 109 num; 14 var)
% Number of types : 4 ( 0 usr; 3 ari)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of predicates : 10 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 41 ( 3 usr; 24 con; 0-2 aty)
% Number of variables : 14 ( 3 !; 11 ?; 14 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
% Bugfixes : v5.5.1 - Removed $evaleq.
%------------------------------------------------------------------------------
%----Types for what follows
tff(p_int_type,type,
p_int: $int > $o ).
tff(p_rat_type,type,
p_rat: $rat > $o ).
tff(p_real_type,type,
p_real: $real > $o ).
tff(a_int,type,
a_int: $int ).
tff(a_rat,type,
a_rat: $rat ).
tff(a_real,type,
a_real: $real ).
%----Numbers
tff(integers,axiom,
( p_int(123)
| p_int(-123) ) ).
tff(rationals,axiom,
( p_rat(123/456)
| p_rat(-123/456)
| p_rat(123/456) ) ).
tff(reals,axiom,
( p_real(123.456)
| p_real(-123.456)
| p_real(123.456E78)
| p_real(123.456e78)
| p_real(-123.456E78)
| p_real(123.456E-78)
| p_real(-123.456E-78) ) ).
%----Variables
tff(variables_int,axiom,
! [X: $int] :
? [Y: $int] :
( p_int(X)
=> p_int(Y) ) ).
tff(variables_rat,axiom,
! [X: $rat] :
? [Y: $rat] :
( p_rat(X)
=> p_rat(Y) ) ).
tff(variables_real,axiom,
! [X: $real] :
? [Y: $real] :
( p_real(X)
=> p_real(Y) ) ).
%----Arithmetic relations
tff(less_int,axiom,
$less(a_int,3) ).
tff(less_rat,axiom,
$less(a_rat,3/9) ).
tff(less_real,axiom,
$less(a_real,3.3) ).
tff(lesseq_int,axiom,
$lesseq(a_int,3) ).
tff(lesseq_rat,axiom,
$lesseq(a_rat,3/9) ).
tff(lesseq_real,axiom,
$lesseq(a_real,3.3) ).
tff(greater_int,axiom,
$greater(a_int,-3) ).
tff(greater_rat,axiom,
$greater(a_rat,-3/9) ).
tff(greater_real,axiom,
$greater(a_real,-3.3) ).
tff(greatereq_int,axiom,
$greatereq(a_int,-3) ).
tff(greatereq_rat,axiom,
$greatereq(a_rat,-3/9) ).
tff(greatereq_real,axiom,
$greatereq(a_real,-3.3) ).
tff(equal_int,axiom,
a_int = 0 ).
tff(equal_rat,axiom,
a_rat = 0/1 ).
tff(equal_real,axiom,
a_real = 0.0 ).
%----Arithmetic functions
tff(uminus_int,axiom,
p_int($uminus(3)) ).
tff(uminus_rat,axiom,
p_rat($uminus(3/9)) ).
tff(uminus_real,axiom,
p_real($uminus(3.3)) ).
tff(sum_int,axiom,
p_int($sum(3,3)) ).
tff(sum_rat,axiom,
p_rat($sum(3/9,3/9)) ).
tff(sum_real,axiom,
p_real($sum(3.3,3.3)) ).
tff(difference_int,axiom,
p_int($difference(3,3)) ).
tff(difference_rat,axiom,
p_rat($difference(3/9,3/9)) ).
tff(difference_real,axiom,
p_real($difference(3.3,3.3)) ).
tff(product_int,axiom,
p_int($product(3,3)) ).
tff(product_rat,axiom,
p_rat($product(3/9,3/9)) ).
tff(product_real,axiom,
p_real($product(3.3,3.3)) ).
tff(quotient_rat,axiom,
p_rat($quotient(3/9,3/9)) ).
tff(quotient_real,axiom,
p_real($quotient(3.3,3.3)) ).
tff(quotient_e_int,axiom,
p_int($quotient_e(3,3)) ).
tff(quotient_e_rat,axiom,
p_rat($quotient_e(3/9,3/9)) ).
tff(quotient_e_real,axiom,
p_real($quotient_e(3.3,3.3)) ).
tff(quotient_t_int,axiom,
p_int($quotient_t(3,3)) ).
tff(quotient_t_rat,axiom,
p_rat($quotient_t(3/9,3/9)) ).
tff(quotient_t_real,axiom,
p_real($quotient_t(3.3,3.3)) ).
tff(quotient_f_int,axiom,
p_int($quotient_f(3,3)) ).
tff(quotient_f_rat,axiom,
p_rat($quotient_f(3/9,3/9)) ).
tff(quotient_f_real,axiom,
p_real($quotient_f(3.3,3.3)) ).
tff(remainder_e_int,axiom,
p_int($remainder_e(3,3)) ).
tff(remainder_e_rat,axiom,
p_rat($remainder_e(3/9,3/9)) ).
tff(remainder_e_real,axiom,
p_real($remainder_e(3.3,3.3)) ).
tff(remainder_t_int,axiom,
p_int($remainder_t(3,3)) ).
tff(remainder_t_rat,axiom,
p_rat($remainder_t(3/9,3/9)) ).
tff(remainder_t_real,axiom,
p_real($remainder_t(3.3,3.3)) ).
tff(remainder_f_int,axiom,
p_int($remainder_f(3,3)) ).
tff(remainder_f_rat,axiom,
p_rat($remainder_f(3/9,3/9)) ).
tff(remainder_f_real,axiom,
p_real($remainder_f(3.3,3.3)) ).
tff(floor_int,axiom,
p_int($floor(3)) ).
tff(floor_rat,axiom,
p_rat($floor(3/9)) ).
tff(floor_real,axiom,
p_real($floor(3.3)) ).
tff(ceiling_int,axiom,
p_int($ceiling(3)) ).
tff(ceiling_rat,axiom,
p_rat($ceiling(3/9)) ).
tff(ceiling_real,axiom,
p_real($ceiling(3.3)) ).
tff(truncate_int,axiom,
p_int($truncate(3)) ).
tff(truncate_rat,axiom,
p_rat($truncate(3/9)) ).
tff(truncate_real,axiom,
p_real($truncate(3.3)) ).
%----Recognizing numbers
tff(is_int_int,axiom,
? [X: $int] : $is_int(X) ).
tff(is_int_rat,axiom,
? [X: $rat] : $is_int(X) ).
tff(is_int_real,axiom,
? [X: $real] : $is_int(X) ).
tff(is_rat_rat,axiom,
? [X: $rat] : $is_rat(X) ).
tff(is_rat_real,axiom,
? [X: $real] : $is_rat(X) ).
%----Coercion
tff(to_int_int,axiom,
p_int($to_int(3)) ).
tff(to_int_rat,axiom,
p_int($to_int(3/9)) ).
tff(to_int_real,axiom,
p_int($to_int(3.3)) ).
tff(to_rat_int,axiom,
p_rat($to_rat(3)) ).
tff(to_rat_rat,axiom,
p_rat($to_rat(3/9)) ).
tff(to_rat_real,axiom,
p_rat($to_rat(3.3)) ).
tff(to_real_int,axiom,
p_real($to_real(3)) ).
tff(to_real_rat,axiom,
p_real($to_real(3/9)) ).
tff(to_real_real,axiom,
p_real($to_real(3.3)) ).
%----A conjecture to prove
tff(mixed,conjecture,
? [X: $int,Y: $rat,Z: $real] :
( ( Y = $to_rat($sum(X,2)) )
& ( $less($to_int(Y),3)
| $greater($to_real(Y),3.3) ) ) ).
%------------------------------------------------------------------------------