TPTP Problem File: SYN000_2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN000_2 : TPTP v9.0.0. Bugfixed v5.5.1.
% Domain : Syntactic
% Problem : Advanced TPTP TF0 syntax without arithmetic
% Version : Biased.
% English :
% Refs :
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Rating : 0.67 v8.2.0, 1.00 v7.4.0, 0.67 v7.2.0, 1.00 v6.0.0
% Syntax : Number of formulae : 24 ( 16 unt; 7 typ; 1 def)
% Number of atoms : 19 ( 2 equ)
% Maximal formula atoms : 3 ( 0 avg)
% Number of connectives : 4 ( 2 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% ( 1 ~|; 1 ~&}
% Maximal formula depth : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 9 ( 5 >; 4 *; 0 +; 0 <<)
% Number of predicates : 5 ( 4 usr; 2 prp; 0-2 aty)
% Number of functors : 7 ( 5 usr; 4 con; 0-3 aty)
% Number of variables : 8 ( 8 !; 0 ?; 8 :)
% SPC : TF0_SAT_EQU_NAR
% Comments :
% Bugfixes : v5.5.1 - Fixed let_binders.
%------------------------------------------------------------------------------
%----Quoted symbols
tff(distinct_object,axiom,
"An Apple" != "A \"Microsoft \\ escape\"" ).
%----Types for stuff below
tff(a_type,type,
a: $i ).
tff(b_type,type,
b: $i ).
tff(f_type,type,
f: $i > $i ).
tff(g_type,type,
g: ( $i * $i ) > $i ).
tff(h_type,type,
h: ( $i * $i * $i ) > $i ).
tff(p_type,type,
p: $i > $o ).
tff(q_type,type,
q: ( $i * $i ) > $o ).
%----Rare connectives
tff(never_used_connectives,axiom,
! [X: $i] :
( ( p(X)
~| ~ q(X,a) )
~& p(X) ) ).
%----Roles
tff(role_definition,definition,
! [X: $i] : ( f(a) = f(X) ) ).
tff(role_assumption,assumption,
p(a) ).
tff(role_lemma,lemma,
p(a) ).
tff(role_theorem,theorem,
p(a) ).
tff(role_unknown,unknown,
p(a) ).
%----Selective include directive
include('Axioms/SYN000_0.ax',[ia1,ia3]).
%----Source
tff(source_unknown,axiom,
! [X: $i] : p(X),
unknown ).
tff(source,axiom,
! [X: $i] : p(X),
file('SYN000-1.p') ).
tff(source_name,axiom,
! [X: $i] : p(X),
file('SYN000-1.p',source_unknown) ).
tff(source_copy,axiom,
! [X: $i] : p(X),
source_unknown ).
tff(source_introduced_assumption,axiom,
! [X: $i] : p(X),
introduced(assumption,[from,the,world]) ).
tff(source_inference,axiom,
p(a),
inference(magic,[status(thm),assumptions([source_introduced_assumption])],[theory(equality),source_unknown]) ).
tff(source_inference_with_bind,axiom,
p(a),
inference(magic,[status(thm)],[theory(equality),source_unknown:[bind(X,$fot(a))]]) ).
%----Useful info
tff(useful_info,axiom,
! [X: $i] : p(X),
unknown,
[simple,prolog(like,Data,[nested,12.2]),AVariable,12.2,"A distinct object",$tff( p(X) | ~ ( q(X,a) ) ),data(name):[colon,list,2],[simple,prolog(like,Data,[nested,12.2]),AVariable,12.2]] ).
%------------------------------------------------------------------------------