TPTP Problem File: SYN000+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN000+2 : TPTP v9.0.0. Bugfixed v7.1.0.
% Domain : Syntactic
% Problem : Advanced TPTP FOF syntax
% Version : Biased.
% English :
% Refs :
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Rating : 0.83 v9.0.0, 0.80 v8.2.0, 0.67 v8.1.0, 0.50 v7.5.0, 1.00 v7.4.0, 0.33 v7.3.0, 0.67 v7.1.0
% Syntax : Number of formulae : 17 ( 16 unt; 1 def)
% Number of atoms : 19 ( 2 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 4 ( 2 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% ( 1 ~|; 1 ~&}
% Maximal formula depth : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 2 prp; 0-3 aty)
% Number of functors : 10 ( 8 usr; 8 con; 0-3 aty)
% Number of variables : 8 ( 8 !; 0 ?)
% SPC : FOF_SAT_RFO_SEQ
% Comments :
% Bugfixes : v4.0.1 - Added more numbers, particularly rationals.
% : v4.1.1 - Removed rationals with negative denominators.
% : v7.1.0 - Removed numbers
%------------------------------------------------------------------------------
%----Quoted symbols
fof(distinct_object,axiom,
"An Apple" != "A \"Microsoft \\ escape\"" ).
%----Connectives - seen |, &, =>, ~ already
fof(never_used_connectives,axiom,
! [X] :
( ( p(X)
~| ~ q(X,a) )
~& p(X) ) ).
%----Roles
fof(role_definition,definition,
! [X] : f(d) = f(X) ).
fof(role_assumption,assumption,
p(a) ).
fof(role_lemma,lemma,
p(l) ).
fof(role_theorem,theorem,
p(t) ).
fof(role_unknown,unknown,
p(u) ).
%----Selective include directive
include('Axioms/SYN000+0.ax',[ia1,ia3]).
%----Source
fof(source_unknown,axiom,
! [X] : p(X),
unknown ).
fof(source,axiom,
! [X] : p(X),
file('SYN000-1.p') ).
fof(source_name,axiom,
! [X] : p(X),
file('SYN000-1.p',source_unknown) ).
fof(source_copy,axiom,
! [X] : p(X),
source_unknown ).
fof(source_introduced_assumption,axiom,
! [X] : p(X),
introduced(assumption,[from,the,world]) ).
fof(source_inference,axiom,
p(a),
inference(magic,[status(thm),assumptions([source_introduced_assumption])],[theory(equality),source_unknown]) ).
fof(source_inference_with_bind,axiom,
p(a),
inference(magic,[status(thm)],[theory(equality),source_unknown:[bind(X,$fot(a))]]) ).
%----Useful info
fof(useful_info,axiom,
! [X] : p(X),
unknown,
[simple,prolog(like,Data,[nested,12.2]),AVariable,12.2,"A distinct object",$fof( p(X) | ~ q(X,a) | r(X,f(Y),g(X,f(Y),Z)) | ~ s(f(f(f(b)))) ),data(name):[colon,list,2],[simple,prolog(like,Data,[nested,12.2]),AVariable,12.2]] ).
%------------------------------------------------------------------------------