TPTP Problem File: SYN000^6.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN000^6 : TPTP v9.0.0. Bugfixed v9.0.0.
% Domain : Syntactic
% Problem : Basic TH0 syntax with modal logic
% Version : Biased.
% English :
% Refs :
% Source : [TPTP]
% Names :
% Status : Unknown
% Rating : 1.00 v9.0.0
% Syntax : Number of formulae : 9 ( 1 unt; 5 typ; 0 def)
% Number of atoms : 8 ( 0 equ; 0 cnn)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 32 ( 0 ~; 0 |; 2 &; 26 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% ( 4 {.}; 0 {#})
% Maximal formula depth : 8 ( 8 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 4 usr; 4 con; 0-2 aty)
% Number of variables : 4 ( 0 ^ 4 !; 0 ?; 4 :)
% SPC : NH0_UNK_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
%----Simpe logic specification
thf(modal_system,logic,
$modal ==
[ $domains == $constant,
$designation == $rigid,
$terms == $local,
$modalities == $modal_system_K ] ).
%----Types for what follows
thf(new_type,type,
new: $tType ).
thf(newc_decl,type,
newc: new ).
thf(newf_decl,type,
newf: new > $i > new ).
thf(newp_decl,type,
newp: new > $i > $o ).
thf(a_decl,type,
a: $i ).
thf(new_necessary_axiom,axiom,
! [X: new] :
( {$necessary}
@ ( ( newp @ ( newf @ newc @ a ) @ a )
& ( newp @ ( newf @ X @ a ) @ a ) ) ) ).
thf(new_possible_axiom,axiom,
( {$possible}
@ ( ! [X: new] : ( newp @ ( newf @ X @ a ) @ a ) ) ) ).
thf(new_necessary_short_axiom,axiom,
! [X: new] :
[.] ( ( newp @ ( newf @ newc @ a ) @ a )
& ( newp @ ( newf @ X @ a ) @ a ) ) ).
thf(new_possible_short_axiom,axiom,
<.> ! [X: new] : ( newp @ ( newf @ X @ a ) @ a ) ).
%------------------------------------------------------------------------------