TPTP Problem File: SYN000^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN000^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Syntactic
% Problem : Basic TPTP TH0 syntax
% Version : Biased.
% English : Basic TPTP TH0 that you can't survive without parsing.
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.29 v7.4.0, 0.11 v7.2.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.57 v6.1.0, 0.29 v6.0.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.60 v5.1.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 42 ( 8 unt; 27 typ; 0 def)
% Number of atoms : 35 ( 4 equ; 0 cnn)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 96 ( 9 ~; 10 |; 3 &; 68 @)
% ( 1 <=>; 3 =>; 1 <=; 1 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 26 ( 26 >; 0 *; 0 +; 0 <<)
% Number of symbols : 29 ( 26 usr; 16 con; 0-3 aty)
% Number of variables : 18 ( 4 ^; 6 !; 8 ?; 18 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Propositional
thf(p0_type,type,
p0: $o ).
thf(q0_type,type,
q0: $o ).
thf(r0_type,type,
r0: $o ).
thf(s0_type,type,
s0: $o ).
thf(propositional,axiom,
( ( p0
& ~ q0 )
=> ( r0
| ~ s0 ) ) ).
%----First-order
thf(a_type,type,
a: $i ).
thf(b_type,type,
b: $i ).
thf(h_type,type,
h: $i ).
thf(f_type,type,
f: $i > $i ).
thf(g_type,type,
g: $i > $i > $i > $i ).
thf(p_type,type,
p: $i > $o ).
thf(q_type,type,
q: $i > $i > $o ).
thf(r_type,type,
r: $i > $i > $i > $o ).
thf(s_type,type,
s: $i > $o ).
thf(first_order,axiom,
! [X: $i] :
( ( ( p @ X )
| ~ ( q @ X @ a ) )
=> ? [Y: $i,Z: $i] :
( ( r @ X @ ( f @ Y ) @ ( g @ X @ ( f @ Y ) @ Z ) )
& ~ ( s @ ( f @ ( f @ ( f @ b ) ) ) ) ) ) ).
%----Equality
thf(equality,axiom,
? [Y: $i] :
! [X: $i,Z: $i] :
( ( ( f @ Y )
= ( g @ X @ ( f @ Y ) @ Z ) )
| ( ( f @ ( f @ ( f @ b ) ) )
!= a )
| ( X
= ( f @ Y ) ) ) ).
%----True and false
thf(true_false,axiom,
( $true
| $false ) ).
thf(quoted_proposition_type,type,
'A proposition': $o ).
thf(quoted_predicate_type,type,
'A predicate': $i > $o ).
thf(quoted_constant_type,type,
'A constant': $i ).
thf(quoted_function_type,type,
'A function': $i > $i ).
thf(quoted_escape_type,type,
'A \'quoted \\ escape\'': $i ).
%----Quoted symbols
thf(single_quoted,axiom,
( 'A proposition'
| ( 'A predicate' @ a )
| ( p @ 'A constant' )
| ( p @ ( 'A function' @ a ) )
| ( p @ 'A \'quoted \\ escape\'' ) ) ).
%----Connectives - seen |, &, =>, ~ already
thf(useful_connectives,axiom,
! [X: $i] :
( ( ( p @ X )
<= ~ ( q @ X @ a ) )
<=> ? [Y: $i,Z: $i] :
( ( r @ X @ ( f @ Y ) @ ( g @ X @ ( f @ Y ) @ Z ) )
<~> ~ ( s @ ( f @ ( f @ ( f @ b ) ) ) ) ) ) ).
%----Lambda terms
thf(l1_type,type,
l1: $i > ( $i > $o ) > $o ).
thf(l2_type,type,
l2: ( $i > ( $i > $i ) > $i ) > $o ).
thf(lambda_defn,axiom,
( l1
= ( ^ [C: $i,P: $i > $o] : ( P @ C ) ) ) ).
thf(lambda_use,axiom,
( l2
@ ^ [C: $i,F: $i > $i] : ( F @ C ) ) ).
%----New types
thf(new_type,type,
new: $tType ).
thf(newc_type,type,
newc: new ).
thf(newf_type,type,
newf: new > $i > new ).
thf(newp_type,type,
newp: new > $i > $o ).
thf(new_axiom,axiom,
! [X: new] : ( newp @ ( newf @ newc @ a ) @ a ) ).
%----Annotated formula names
thf(123,axiom,
! [X: $i] :
( ( ( p @ X )
| ~ ( q @ X @ a ) )
=> ? [Y: $i,Z: $i] :
( ( r @ X @ ( f @ Y ) @ ( g @ X @ ( f @ Y ) @ Z ) )
& ~ ( s @ ( f @ ( f @ ( f @ b ) ) ) ) ) ) ).
%----Roles
thf(role_hypothesis,hypothesis,
p @ h ).
thf(role_conjecture,conjecture,
? [X: $i] : ( p @ X ) ).
%----Include directive
include('Axioms/SYN000^0.ax').
%----Comments
/* This
is a block
comment.
*/
%------------------------------------------------------------------------------