TPTP Problem File: SWX121_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWX000_1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Software Verification
% Problem : Anthem problem formula_4_left_0
% Version : Especial.
% English :
% Refs : [FL+20] Fandinno et al. (2020), Verifying Tight Logic Programs
% : [FH+23] Fandinno et al. (2023), External Behavior of a Logic P
% : [Han25] Hansen (2025), Email to Geoff Sutcliffe
% Source : [Han25]
% Names :
% Status : Theorem
% Rating : 0.50 v9.1.0
% Syntax : Number of formulae : 36 ( 3 unt; 16 typ; 0 def)
% Number of atoms : 101 ( 45 equ)
% Maximal formula atoms : 32 ( 5 avg)
% Number of connectives : 93 ( 12 ~; 4 |; 59 &)
% ( 8 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 8 ( 1 atm; 0 fun; 0 num; 7 var)
% Number of types : 4 ( 2 usr; 1 ari)
% Number of type conns : 18 ( 12 >; 6 *; 0 +; 0 <<)
% Number of predicates : 13 ( 10 usr; 1 prp; 0-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-1 aty)
% Number of variables : 68 ( 40 !; 28 ?; 68 :)
% SPC : TF0_THM_EQU_ARI
% Comments :From https://github.com/ZachJHansen/anthem-benchmarks/tree/tptp
%------------------------------------------------------------------------------
include('Axioms/SWV014_0.ax').
%------------------------------------------------------------------------------
tff(predicate_0,type,
hq: ( general * general ) > $o ).
tff(predicate_1,type,
tq: ( general * general ) > $o ).
tff(predicate_2,type,
hp: general > $o ).
tff(predicate_3,type,
tp: general > $o ).
tff(formula_0_transition_axiom_0,axiom,
! [X1_g: general,X2_g: general] :
( hq(X1_g,X2_g)
=> tq(X1_g,X2_g) ) ).
tff(formula_1_transition_axiom_1,axiom,
! [X1_g: general] :
( hp(X1_g)
=> tp(X1_g) ) ).
tff(formula_2_right_0,axiom,
! [V1_g: general,V2_g: general,X_g: general,Y_g: general] :
( ( ( ( V1_g = X_g )
& ( V2_g = Y_g )
& ? [Z_g: general] :
( ( Z_g = X_g )
& hp(Z_g) )
& ? [Z_g: general] :
( ( Z_g = Y_g )
& hp(Z_g) )
& ~ ~ tq(V1_g,V2_g) )
=> hq(V1_g,V2_g) )
& ( ( ( V1_g = X_g )
& ( V2_g = Y_g )
& ? [Z_g: general] :
( ( Z_g = X_g )
& tp(Z_g) )
& ? [Z_g: general] :
( ( Z_g = Y_g )
& tp(Z_g) )
& ~ ~ tq(V1_g,V2_g) )
=> tq(V1_g,V2_g) ) ) ).
tff(formula_3_right_1,axiom,
! [X_g: general,Y_g: general,Z_g: general] :
( ( ( ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = Y_g )
& hq(Z_g,Z1_g) )
& ? [Z1_g: general,Z2_g: general] :
( ( Z1_g = Y_g )
& ( Z2_g = Z_g )
& hq(Z1_g,Z2_g) )
& ? [Z1_g: general,Z2_g: general] :
( ( Z1_g = X_g )
& ( Z2_g = Z_g )
& ~ tq(Z1_g,Z2_g) )
& ? [Z_g: general] :
( ( Z_g = X_g )
& hp(Z_g) )
& ? [Z_g: general] :
( ( Z_g = Y_g )
& hp(Z_g) )
& ? [Z1_g: general] :
( ( Z1_g = Z_g )
& hp(Z1_g) ) )
=> $false )
& ( ( ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = Y_g )
& tq(Z_g,Z1_g) )
& ? [Z1_g: general,Z2_g: general] :
( ( Z1_g = Y_g )
& ( Z2_g = Z_g )
& tq(Z1_g,Z2_g) )
& ? [Z1_g: general,Z2_g: general] :
( ( Z1_g = X_g )
& ( Z2_g = Z_g )
& ~ tq(Z1_g,Z2_g) )
& ? [Z_g: general] :
( ( Z_g = X_g )
& tp(Z_g) )
& ? [Z_g: general] :
( ( Z_g = Y_g )
& tp(Z_g) )
& ? [Z1_g: general] :
( ( Z1_g = Z_g )
& tp(Z1_g) ) )
=> $false ) ) ).
tff(formula_4_left_0,conjecture,
! [V1_g: general,V2_g: general,X_g: general,Y_g: general] :
( ( ( ( V1_g = X_g )
& ( V2_g = Y_g )
& ? [Z_g: general] :
( ( Z_g = X_g )
& hp(Z_g) )
& ? [Z_g: general] :
( ( Z_g = Y_g )
& hp(Z_g) )
& ~ ~ tq(V1_g,V2_g) )
=> hq(V1_g,V2_g) )
& ( ( ( V1_g = X_g )
& ( V2_g = Y_g )
& ? [Z_g: general] :
( ( Z_g = X_g )
& tp(Z_g) )
& ? [Z_g: general] :
( ( Z_g = Y_g )
& tp(Z_g) )
& ~ ~ tq(V1_g,V2_g) )
=> tq(V1_g,V2_g) ) ) ).
%------------------------------------------------------------------------------