TPTP Problem File: SWX120_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWX000_1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Software Verification
% Problem : Anthem problem formula_3_completed_definition_of_prime_1
% Version : Especial.
% English :
% Refs : [FL+20] Fandinno et al. (2020), Verifying Tight Logic Programs
% : [FH+23] Fandinno et al. (2023), External Behavior of a Logic P
% : [Han25] Hansen (2025), Email to Geoff Sutcliffe
% Source : [Han25]
% Names :
% Status : Theorem
% Rating : 0.88 v9.1.0
% Syntax : Number of formulae : 35 ( 3 unt; 16 typ; 0 def)
% Number of atoms : 83 ( 45 equ)
% Maximal formula atoms : 18 ( 4 avg)
% Number of connectives : 68 ( 4 ~; 4 |; 46 &)
% ( 12 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 7 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 40 ( 9 atm; 2 fun; 6 num; 23 var)
% Number of types : 4 ( 2 usr; 1 ari)
% Number of type conns : 15 ( 11 >; 4 *; 0 +; 0 <<)
% Number of predicates : 11 ( 9 usr; 0 prp; 1-2 aty)
% Number of functors : 8 ( 5 usr; 5 con; 0-2 aty)
% Number of variables : 68 ( 30 !; 38 ?; 68 :)
% SPC : TF0_THM_EQU_ARI
% Comments :From https://github.com/ZachJHansen/anthem-benchmarks/tree/tptp
%------------------------------------------------------------------------------
include('Axioms/SWV014_0.ax').
%------------------------------------------------------------------------------
tff(predicate_0,type,
composite: general > $o ).
tff(predicate_1,type,
composite_p: general > $o ).
tff(predicate_2,type,
prime: general > $o ).
tff(type_function_constant_0,type,
n_i: $int ).
tff(formula_0_completed_definition_of_composite_1,axiom,
! [V1_g: general] :
( composite(V1_g)
<=> ? [I_g: general,J_g: general] :
( ? [I1_i: $int,J1_i: $int] :
( ( V1_g = f__integer__($product(I1_i,J1_i)) )
& ( f__integer__(I1_i) = I_g )
& ( f__integer__(J1_i) = J_g ) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = I_g )
& ( Z1_g = f__integer__(1) )
& p__greater__(Z_g,Z1_g) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = J_g )
& ( Z1_g = f__integer__(1) )
& p__greater__(Z_g,Z1_g) ) ) ) ).
tff(formula_1_completed_definition_of_composite_1,axiom,
! [V1_g: general] :
( composite_p(V1_g)
<=> ? [I_g: general,J_g: general] :
( ? [I1_i: $int,J1_i: $int] :
( ( V1_g = f__integer__($product(I1_i,J1_i)) )
& ( f__integer__(I1_i) = I_g )
& ( f__integer__(J1_i) = J_g ) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = I_g )
& ? [I_i: $int,J_i: $int,K_i: $int] :
( ( I_i = 2 )
& ( J_i = n_i )
& ( Z1_g = f__integer__(K_i) )
& $lesseq(I_i,K_i)
& $lesseq(K_i,J_i) )
& ( Z_g = Z1_g ) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = J_g )
& ? [I_i: $int,J_i: $int,K_i: $int] :
( ( I_i = 2 )
& ( J_i = n_i )
& ( Z1_g = f__integer__(K_i) )
& $lesseq(I_i,K_i)
& $lesseq(K_i,J_i) )
& ( Z_g = Z1_g ) ) ) ) ).
tff(formula_2_completed_definition_of_prime_1,axiom,
! [V1_g: general] :
( prime(V1_g)
<=> ? [I_g: general] :
( ( V1_g = I_g )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = I_g )
& ? [I_i: $int,J_i: $int,K_i: $int] :
( ( I_i = 2 )
& ( J_i = n_i )
& ( Z1_g = f__integer__(K_i) )
& $lesseq(I_i,K_i)
& $lesseq(K_i,J_i) )
& ( Z_g = Z1_g ) )
& ? [Z_g: general] :
( ( Z_g = I_g )
& ~ composite(Z_g) ) ) ) ).
tff(formula_3_completed_definition_of_prime_1,conjecture,
! [V1_g: general] :
( prime(V1_g)
<=> ? [I_g: general] :
( ( V1_g = I_g )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = I_g )
& ? [I_i: $int,J_i: $int,K_i: $int] :
( ( I_i = 2 )
& ( J_i = n_i )
& ( Z1_g = f__integer__(K_i) )
& $lesseq(I_i,K_i)
& $lesseq(K_i,J_i) )
& ( Z_g = Z1_g ) )
& ? [Z_g: general] :
( ( Z_g = I_g )
& ~ composite_p(Z_g) ) ) ) ).
%------------------------------------------------------------------------------