TPTP Problem File: SWX108_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWX000_1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Software Verification
% Problem : Anthem problem formula_3_right_0
% Version : Especial.
% English :
% Refs : [FL+20] Fandinno et al. (2020), Verifying Tight Logic Programs
% : [FH+23] Fandinno et al. (2023), External Behavior of a Logic P
% : [Han25] Hansen (2025), Email to Geoff Sutcliffe
% Source : [Han25]
% Names :
% Status : Theorem
% Rating : 0.50 v9.1.0
% Syntax : Number of formulae : 35 ( 3 unt; 16 typ; 0 def)
% Number of atoms : 69 ( 35 equ)
% Maximal formula atoms : 16 ( 3 avg)
% Number of connectives : 52 ( 2 ~; 4 |; 30 &)
% ( 8 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 24 ( 1 atm; 4 fun; 4 num; 15 var)
% Number of types : 4 ( 2 usr; 1 ari)
% Number of type conns : 20 ( 12 >; 8 *; 0 +; 0 <<)
% Number of predicates : 12 ( 10 usr; 0 prp; 1-2 aty)
% Number of functors : 7 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 56 ( 38 !; 18 ?; 56 :)
% SPC : TF0_THM_EQU_ARI
% Comments :From https://github.com/ZachJHansen/anthem-benchmarks/tree/tptp
%------------------------------------------------------------------------------
include('Axioms/SWV014_0.ax').
%------------------------------------------------------------------------------
tff(predicate_0,type,
hq: ( general * general ) > $o ).
tff(predicate_1,type,
tq: ( general * general ) > $o ).
tff(predicate_2,type,
hp: ( general * general ) > $o ).
tff(predicate_3,type,
tp: ( general * general ) > $o ).
tff(formula_0_transition_axiom_0,axiom,
! [X1_g: general,X2_g: general] :
( hq(X1_g,X2_g)
=> tq(X1_g,X2_g) ) ).
tff(formula_1_transition_axiom_1,axiom,
! [X1_g: general,X2_g: general] :
( hp(X1_g,X2_g)
=> tp(X1_g,X2_g) ) ).
tff(formula_2_left_0,axiom,
! [V1_g: general,V2_g: general,X_g: general,Y_g: general] :
( ( ( ( V1_g = X_g )
& ? [I_i: $int,J_i: $int] :
( ( V2_g = f__integer__($sum(I_i,J_i)) )
& ( f__integer__(I_i) = Y_g )
& ( J_i = 1 ) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = Y_g )
& hp(Z_g,Z1_g) ) )
=> hq(V1_g,V2_g) )
& ( ( ( V1_g = X_g )
& ? [I_i: $int,J_i: $int] :
( ( V2_g = f__integer__($sum(I_i,J_i)) )
& ( f__integer__(I_i) = Y_g )
& ( J_i = 1 ) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = Y_g )
& tp(Z_g,Z1_g) ) )
=> tq(V1_g,V2_g) ) ) ).
tff(formula_3_right_0,conjecture,
! [V1_g: general,V2_g: general,X_g: general,Y_g: general] :
( ( ( ( V1_g = X_g )
& ( V2_g = Y_g )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ? [I_i: $int,J_i: $int] :
( ( Z1_g = f__integer__($difference(I_i,J_i)) )
& ( f__integer__(I_i) = Y_g )
& ( J_i = 1 ) )
& hp(Z_g,Z1_g) ) )
=> hq(V1_g,V2_g) )
& ( ( ( V1_g = X_g )
& ( V2_g = Y_g )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ? [I_i: $int,J_i: $int] :
( ( Z1_g = f__integer__($difference(I_i,J_i)) )
& ( f__integer__(I_i) = Y_g )
& ( J_i = 1 ) )
& tp(Z_g,Z1_g) ) )
=> tq(V1_g,V2_g) ) ) ).
%------------------------------------------------------------------------------