TPTP Problem File: SWX107_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWX000_1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Software Verification
% Problem : Anthem problem formula_2_right_0
% Version : Especial.
% English :
% Refs : [FL+20] Fandinno et al. (2020), Verifying Tight Logic Programs
% : [FH+23] Fandinno et al. (2023), External Behavior of a Logic P
% : [Han25] Hansen (2025), Email to Geoff Sutcliffe
% Source : [Han25]
% Names :
% Status : Theorem
% Rating : 0.75 v9.1.0
% Syntax : Number of formulae : 32 ( 3 unt; 14 typ; 0 def)
% Number of atoms : 91 ( 55 equ)
% Maximal formula atoms : 28 ( 5 avg)
% Number of connectives : 75 ( 2 ~; 4 |; 54 &)
% ( 8 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 50 ( 9 atm; 6 fun; 8 num; 27 var)
% Number of types : 4 ( 2 usr; 1 ari)
% Number of type conns : 14 ( 10 >; 4 *; 0 +; 0 <<)
% Number of predicates : 10 ( 8 usr; 0 prp; 1-2 aty)
% Number of functors : 8 ( 4 usr; 4 con; 0-2 aty)
% Number of variables : 71 ( 33 !; 38 ?; 71 :)
% SPC : TF0_THM_EQU_ARI
% Comments :From https://github.com/ZachJHansen/anthem-benchmarks/tree/tptp
%------------------------------------------------------------------------------
include('Axioms/SWV014_0.ax').
%------------------------------------------------------------------------------
tff(predicate_0,type,
hp: general > $o ).
tff(predicate_1,type,
tp: general > $o ).
tff(formula_0_transition_axiom_0,axiom,
! [X1_g: general] :
( hp(X1_g)
=> tp(X1_g) ) ).
tff(formula_1_left_0,axiom,
! [V1_g: general,X_g: general,Y_g: general] :
( ( ( ( V1_g = Y_g )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ? [I_i: $int,J_i: $int,K_i: $int] :
( ( I_i = 0 )
& ( J_i = 1 )
& ( Z1_g = f__integer__(K_i) )
& $lesseq(I_i,K_i)
& $lesseq(K_i,J_i) )
& ( Z_g = Z1_g ) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = Y_g )
& ? [I_i: $int,J_i: $int] :
( ( Z1_g = f__integer__($product(I_i,J_i)) )
& ( f__integer__(I_i) = X_g )
& ( f__integer__(J_i) = X_g ) )
& ( Z_g = Z1_g ) ) )
=> hp(V1_g) )
& ( ( ( V1_g = Y_g )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ? [I_i: $int,J_i: $int,K_i: $int] :
( ( I_i = 0 )
& ( J_i = 1 )
& ( Z1_g = f__integer__(K_i) )
& $lesseq(I_i,K_i)
& $lesseq(K_i,J_i) )
& ( Z_g = Z1_g ) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = Y_g )
& ? [I_i: $int,J_i: $int] :
( ( Z1_g = f__integer__($product(I_i,J_i)) )
& ( f__integer__(I_i) = X_g )
& ( f__integer__(J_i) = X_g ) )
& ( Z_g = Z1_g ) ) )
=> tp(V1_g) ) ) ).
tff(formula_2_right_0,conjecture,
! [V1_g: general,X_g: general,Y_g: general] :
( ( ( ( V1_g = Y_g )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ? [I_i: $int,J_i: $int,K_i: $int] :
( ( I_i = $uminus(1) )
& ( J_i = 1 )
& ( Z1_g = f__integer__(K_i) )
& $lesseq(I_i,K_i)
& $lesseq(K_i,J_i) )
& ( Z_g = Z1_g ) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = Y_g )
& ? [I_i: $int,J_i: $int] :
( ( Z1_g = f__integer__($product(I_i,J_i)) )
& ( f__integer__(I_i) = X_g )
& ( f__integer__(J_i) = X_g ) )
& ( Z_g = Z1_g ) ) )
=> hp(V1_g) )
& ( ( ( V1_g = Y_g )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ? [I_i: $int,J_i: $int,K_i: $int] :
( ( I_i = $uminus(1) )
& ( J_i = 1 )
& ( Z1_g = f__integer__(K_i) )
& $lesseq(I_i,K_i)
& $lesseq(K_i,J_i) )
& ( Z_g = Z1_g ) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = Y_g )
& ? [I_i: $int,J_i: $int] :
( ( Z1_g = f__integer__($product(I_i,J_i)) )
& ( f__integer__(I_i) = X_g )
& ( f__integer__(J_i) = X_g ) )
& ( Z_g = Z1_g ) ) )
=> tp(V1_g) ) ) ).
%------------------------------------------------------------------------------