TPTP Problem File: SWX089_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWX000_1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Software Verification
% Problem : Anthem problem formula_3_left_0
% Version : Especial.
% English :
% Refs : [FL+20] Fandinno et al. (2020), Verifying Tight Logic Programs
% : [FH+23] Fandinno et al. (2023), External Behavior of a Logic P
% : [Han25] Hansen (2025), Email to Geoff Sutcliffe
% Source : [Han25]
% Names :
% Status : Theorem
% Rating : 0.50 v9.1.0
% Syntax : Number of formulae : 35 ( 3 unt; 16 typ; 0 def)
% Number of atoms : 45 ( 11 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 28 ( 2 ~; 4 |; 6 &)
% ( 8 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 8 ( 1 atm; 0 fun; 0 num; 7 var)
% Number of types : 4 ( 2 usr; 1 ari)
% Number of type conns : 12 ( 8 >; 4 *; 0 +; 0 <<)
% Number of predicates : 12 ( 10 usr; 4 prp; 0-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-1 aty)
% Number of variables : 28 ( 26 !; 2 ?; 28 :)
% SPC : TF0_THM_EQU_ARI
% Comments :From https://github.com/ZachJHansen/anthem-benchmarks/tree/tptp
%------------------------------------------------------------------------------
include('Axioms/SWV014_0.ax').
%------------------------------------------------------------------------------
tff(predicate_0,type,
hq: $o ).
tff(predicate_1,type,
tq: $o ).
tff(predicate_2,type,
hp: $o ).
tff(predicate_3,type,
tp: $o ).
tff(formula_0_transition_axiom_0,axiom,
( hq
=> tq ) ).
tff(formula_1_transition_axiom_1,axiom,
( hp
=> tp ) ).
tff(formula_2_right_0,axiom,
( ( hp
=> hq )
& ( tp
=> tq ) ) ).
tff(formula_3_left_0,conjecture,
( ( hp
=> hq )
& ( tp
=> tq ) ) ).
%------------------------------------------------------------------------------