TPTP Problem File: SWX083_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWX000_1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Software Verification
% Problem : Anthem problem formula_3_inductive_step
% Version : Especial.
% English :
% Refs : [FL+20] Fandinno et al. (2020), Verifying Tight Logic Programs
% : [FH+23] Fandinno et al. (2023), External Behavior of a Logic P
% : [Han25] Hansen (2025), Email to Geoff Sutcliffe
% Source : [Han25]
% Names :
% Status : Theorem
% Rating : 0.75 v9.1.0
% Syntax : Number of formulae : 32 ( 3 unt; 13 typ; 0 def)
% Number of atoms : 61 ( 26 equ)
% Maximal formula atoms : 18 ( 3 avg)
% Number of connectives : 44 ( 2 ~; 4 |; 22 &)
% ( 9 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 27 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 50 ( 5 atm; 9 fun; 12 num; 24 var)
% Number of types : 4 ( 2 usr; 1 ari)
% Number of type conns : 16 ( 9 >; 7 *; 0 +; 0 <<)
% Number of predicates : 12 ( 7 usr; 0 prp; 1-4 aty)
% Number of functors : 9 ( 4 usr; 4 con; 0-2 aty)
% Number of variables : 59 ( 39 !; 20 ?; 59 :)
% SPC : TF0_THM_EQU_ARI
% Comments :From https://github.com/ZachJHansen/anthem-benchmarks/tree/tptp
%------------------------------------------------------------------------------
include('Axioms/SWV014_0.ax').
%------------------------------------------------------------------------------
tff(predicate_0,type,
div: ( general * general * general * general ) > $o ).
tff(formula_0_completed_definition_of_div_4,axiom,
! [V1_g: general,V2_g: general,V3_g: general,V4_g: general] :
( div(V1_g,V2_g,V3_g,V4_g)
<=> ? [N_g: general,D_g: general,Q_g: general,R_g: general] :
( ( V1_g = N_g )
& ( V2_g = D_g )
& ( V3_g = Q_g )
& ( V4_g = R_g )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = N_g )
& ? [I_i: $int,J_i: $int] :
( ( Z1_g = f__integer__($sum(I_i,J_i)) )
& ? [I1_i: $int,J_i: $int] :
( ( I_i = $product(I1_i,J_i) )
& ( f__integer__(I1_i) = D_g )
& ( f__integer__(J_i) = Q_g ) )
& ( f__integer__(J_i) = R_g ) )
& ( Z_g = Z1_g ) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = f__integer__(0) )
& ( Z1_g = R_g )
& p__less_equal__(Z_g,Z1_g) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = R_g )
& ( Z1_g = D_g )
& p__less__(Z_g,Z1_g) ) ) ) ).
tff(formula_1_unnamed_formula,axiom,
! [N_i: $int,D_i: $int,Q_i: $int,R_i: $int] :
( ( div(f__integer__(N_i),f__integer__(D_i),f__integer__(Q_i),f__integer__(R_i))
& $less(R_i,$difference(D_i,1)) )
=> div(f__integer__($sum(N_i,1)),f__integer__(D_i),f__integer__(Q_i),f__integer__($sum(R_i,1))) ) ).
tff(formula_2_unnamed_formula,axiom,
! [N_i: $int,D_i: $int,Q_i: $int] :
( div(f__integer__(N_i),f__integer__(D_i),f__integer__(Q_i),f__integer__($difference(D_i,1)))
=> div(f__integer__($sum(N_i,1)),f__integer__(D_i),f__integer__($sum(Q_i,1)),f__integer__(0)) ) ).
tff(formula_3_inductive_step,conjecture,
! [N_i: $int,D_i: $int] :
( ( $greatereq(N_i,0)
& ( $greater(D_i,0)
=> ? [Q_i: $int,R_i: $int] : div(f__integer__(N_i),f__integer__(D_i),f__integer__(Q_i),f__integer__(R_i)) ) )
=> ( $greater(D_i,0)
=> ? [Q_i: $int,R_i: $int] : div(f__integer__($sum(N_i,1)),f__integer__(D_i),f__integer__(Q_i),f__integer__(R_i)) ) ) ).
%------------------------------------------------------------------------------