TPTP Problem File: SWX077_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWX000_1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Software Verification
% Problem : Anthem problem formula_6_constraint_0
% Version : Especial.
% English :
% Refs : [FL+20] Fandinno et al. (2020), Verifying Tight Logic Programs
% : [FH+23] Fandinno et al. (2023), External Behavior of a Logic P
% : [Han25] Hansen (2025), Email to Geoff Sutcliffe
% Source : [Han25]
% Names :
% Status : Theorem
% Rating : 0.50 v9.1.0
% Syntax : Number of formulae : 39 ( 4 unt; 17 typ; 0 def)
% Number of atoms : 90 ( 42 equ)
% Maximal formula atoms : 14 ( 4 avg)
% Number of connectives : 74 ( 6 ~; 4 |; 48 &)
% ( 11 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 16 ( 4 atm; 0 fun; 2 num; 10 var)
% Number of types : 4 ( 2 usr; 1 ari)
% Number of type conns : 17 ( 12 >; 5 *; 0 +; 0 <<)
% Number of predicates : 15 ( 10 usr; 2 prp; 0-2 aty)
% Number of functors : 7 ( 5 usr; 5 con; 0-1 aty)
% Number of variables : 71 ( 37 !; 34 ?; 71 :)
% SPC : TF0_THM_EQU_ARI
% Comments :From https://github.com/ZachJHansen/anthem-benchmarks/tree/tptp
%------------------------------------------------------------------------------
include('Axioms/SWV014_0.ax').
%------------------------------------------------------------------------------
tff(predicate_0,type,
covered: general > $o ).
tff(predicate_1,type,
in_cover: general > $o ).
tff(predicate_2,type,
s: ( general * general ) > $o ).
tff(predicate_3,type,
covered_p: general > $o ).
tff(type_function_constant_0,type,
n_i: $int ).
tff(formula_0_unnamed_formula,axiom,
$greatereq(n_i,0) ).
tff(formula_1_completed_definition_of_covered_1,axiom,
! [V1_g: general] :
( covered(V1_g)
<=> ? [X_g: general,I_g: general] :
( ( V1_g = X_g )
& ? [Z_g: general] :
( ( Z_g = I_g )
& in_cover(Z_g) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = I_g )
& s(Z_g,Z1_g) ) ) ) ).
tff(formula_2_completed_definition_of_covered_1,axiom,
! [V1_g: general] :
( covered_p(V1_g)
<=> ? [X_g: general,I_g: general] :
( ( V1_g = X_g )
& ? [Z_g: general] :
( ( Z_g = I_g )
& in_cover(Z_g) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = I_g )
& s(Z_g,Z1_g) ) ) ) ).
tff(formula_3_constraint_0,axiom,
! [I_g: general,J_g: general,X_g: general] :
( ( ? [Z_g: general,Z1_g: general] :
( ( Z_g = I_g )
& ( Z1_g = J_g )
& p__less__(Z_g,Z1_g) )
& ? [Z_g: general] :
( ( Z_g = I_g )
& in_cover(Z_g) )
& ? [Z_g: general] :
( ( Z_g = J_g )
& in_cover(Z_g) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = I_g )
& s(Z_g,Z1_g) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = J_g )
& s(Z_g,Z1_g) ) )
=> $false ) ).
tff(formula_4_constraint_1,axiom,
! [X_g: general,I_g: general] :
( ( ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = I_g )
& s(Z_g,Z1_g) )
& ? [Z_g: general] :
( ( Z_g = X_g )
& ~ covered_p(Z_g) ) )
=> $false ) ).
tff(formula_5_completed_definition_of_in_cover_1,axiom,
! [V1_g: general] :
( in_cover(V1_g)
<=> ( ? [I_i: $int,J_i: $int,K_i: $int] :
( ( I_i = 1 )
& ( J_i = n_i )
& ( V1_g = f__integer__(K_i) )
& $lesseq(I_i,K_i)
& $lesseq(K_i,J_i) )
& $true
& ~ ~ in_cover(V1_g) ) ) ).
tff(formula_6_constraint_0,conjecture,
! [I_g: general,J_g: general,X_g: general] :
( ( ? [Z_g: general,Z1_g: general] :
( ( Z_g = I_g )
& ( Z1_g = J_g )
& ( Z_g != Z1_g ) )
& ? [Z_g: general] :
( ( Z_g = I_g )
& in_cover(Z_g) )
& ? [Z_g: general] :
( ( Z_g = J_g )
& in_cover(Z_g) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = I_g )
& s(Z_g,Z1_g) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = J_g )
& s(Z_g,Z1_g) ) )
=> $false ) ).
%------------------------------------------------------------------------------