TPTP Problem File: SWX076_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWX000_1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Software Verification
% Problem : Anthem problem formula_8_unnamed_formula
% Version : Especial.
% English :
% Refs : [FL+20] Fandinno et al. (2020), Verifying Tight Logic Programs
% : [FH+23] Fandinno et al. (2023), External Behavior of a Logic P
% : [Han25] Hansen (2025), Email to Geoff Sutcliffe
% Source : [Han25]
% Names :
% Status : Theorem
% Rating : 0.75 v9.1.0
% Syntax : Number of formulae : 41 ( 3 unt; 17 typ; 0 def)
% Number of atoms : 86 ( 36 equ)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 68 ( 6 ~; 4 |; 39 &)
% ( 10 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 8 ( 1 atm; 0 fun; 0 num; 7 var)
% Number of types : 4 ( 2 usr; 1 ari)
% Number of type conns : 19 ( 13 >; 6 *; 0 +; 0 <<)
% Number of predicates : 14 ( 11 usr; 1 prp; 0-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-1 aty)
% Number of variables : 71 ( 44 !; 27 ?; 71 :)
% SPC : TF0_THM_EQU_ARI
% Comments :From https://github.com/ZachJHansen/anthem-benchmarks/tree/tptp
%------------------------------------------------------------------------------
include('Axioms/SWV014_0.ax').
%------------------------------------------------------------------------------
tff(predicate_0,type,
edge: ( general * general ) > $o ).
tff(predicate_1,type,
vertex: general > $o ).
tff(predicate_2,type,
aux: general > $o ).
tff(predicate_3,type,
color: general > $o ).
tff(predicate_4,type,
color: ( general * general ) > $o ).
tff(formula_0_unnamed_formula,axiom,
! [X_g: general,Y_g: general] :
( edge(X_g,Y_g)
=> ( vertex(X_g)
& vertex(Y_g) ) ) ).
tff(formula_1_completed_definition_of_aux_1,axiom,
! [V1_g: general] :
( aux(V1_g)
<=> ? [X_g: general,Z_g: general] :
( ( V1_g = X_g )
& ? [Z_g: general] :
( ( Z_g = X_g )
& vertex(Z_g) )
& ? [Z1_g: general] :
( ( Z1_g = Z_g )
& color(Z1_g) )
& ? [Z1_g: general,Z2_g: general] :
( ( Z1_g = X_g )
& ( Z2_g = Z_g )
& color(Z1_g,Z2_g) ) ) ) ).
tff(formula_2_constraint_0,axiom,
! [X_g: general,Z1_g: general,Z2_g: general] :
( ( ? [Z_g: general,Z2_g: general] :
( ( Z_g = X_g )
& ( Z2_g = Z1_g )
& color(Z_g,Z2_g) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = Z2_g )
& color(Z_g,Z1_g) )
& ? [Z_g: general,Z3_g: general] :
( ( Z_g = Z1_g )
& ( Z3_g = Z2_g )
& ( Z_g != Z3_g ) ) )
=> $false ) ).
tff(formula_3_constraint_1,axiom,
! [X_g: general] :
( ( ? [Z_g: general] :
( ( Z_g = X_g )
& vertex(Z_g) )
& ? [Z_g: general] :
( ( Z_g = X_g )
& ~ aux(Z_g) ) )
=> $false ) ).
tff(formula_4_constraint_2,axiom,
! [X_g: general,Y_g: general,Z_g: general] :
( ( ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = Y_g )
& edge(Z_g,Z1_g) )
& ? [Z1_g: general,Z2_g: general] :
( ( Z1_g = X_g )
& ( Z2_g = Z_g )
& color(Z1_g,Z2_g) )
& ? [Z1_g: general,Z2_g: general] :
( ( Z1_g = Y_g )
& ( Z2_g = Z_g )
& color(Z1_g,Z2_g) ) )
=> $false ) ).
tff(formula_5_completed_definition_of_color_2,axiom,
! [V1_g: general,V2_g: general] :
( color(V1_g,V2_g)
<=> ? [X_g: general,Z_g: general] :
( ( V1_g = X_g )
& ( V2_g = Z_g )
& ? [Z_g: general] :
( ( Z_g = X_g )
& vertex(Z_g) )
& ? [Z1_g: general] :
( ( Z1_g = Z_g )
& color(Z1_g) )
& ~ ~ color(V1_g,V2_g) ) ) ).
tff(formula_6_unnamed_formula,axiom,
! [X_g: general,Z_g: general] :
( color(X_g,Z_g)
=> ( vertex(X_g)
& color(Z_g) ) ) ).
tff(formula_7_unnamed_formula,axiom,
! [X_g: general] :
( vertex(X_g)
=> ? [Z_g: general] : color(X_g,Z_g) ) ).
tff(formula_8_unnamed_formula,conjecture,
! [X_g: general,Z1_g: general,Z2_g: general] :
( ( color(X_g,Z1_g)
& color(X_g,Z2_g) )
=> ( Z1_g = Z2_g ) ) ).
%------------------------------------------------------------------------------