TPTP Problem File: SWX072_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWX000_1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Software Verification
% Problem : Anthem problem formula_2_right_0
% Version : Especial.
% English :
% Refs : [FL+20] Fandinno et al. (2020), Verifying Tight Logic Programs
% : [FH+23] Fandinno et al. (2023), External Behavior of a Logic P
% : [Han25] Hansen (2025), Email to Geoff Sutcliffe
% Source : [Han25]
% Names :
% Status : Theorem
% Rating : 0.50 v9.1.0
% Syntax : Number of formulae : 32 ( 3 unt; 14 typ; 0 def)
% Number of atoms : 57 ( 23 equ)
% Maximal formula atoms : 16 ( 3 avg)
% Number of connectives : 41 ( 2 ~; 4 |; 20 &)
% ( 8 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 14 ( 1 atm; 0 fun; 6 num; 7 var)
% Number of types : 4 ( 2 usr; 1 ari)
% Number of type conns : 14 ( 10 >; 4 *; 0 +; 0 <<)
% Number of predicates : 11 ( 8 usr; 1 prp; 0-2 aty)
% Number of functors : 7 ( 4 usr; 5 con; 0-1 aty)
% Number of variables : 40 ( 30 !; 10 ?; 40 :)
% SPC : TF0_THM_EQU_ARI
% Comments : From https://github.com/ZachJHansen/anthem-benchmarks/tree/tptp
%------------------------------------------------------------------------------
include('Axioms/SWV014_0.ax').
%------------------------------------------------------------------------------
tff(predicate_0,type,
hp: general > $o ).
tff(predicate_1,type,
tp: general > $o ).
tff(formula_0_transition_axiom_0,axiom,
! [X1_g: general] :
( hp(X1_g)
=> tp(X1_g) ) ).
tff(formula_1_left_0,axiom,
! [V1_g: general,X_g: general] :
( ( ( ( V1_g = X_g )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = f__integer__(3) )
& p__greater__(Z_g,Z1_g) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = f__integer__(5) )
& p__less__(Z_g,Z1_g) ) )
=> hp(V1_g) )
& ( ( ( V1_g = X_g )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = f__integer__(3) )
& p__greater__(Z_g,Z1_g) )
& ? [Z_g: general,Z1_g: general] :
( ( Z_g = X_g )
& ( Z1_g = f__integer__(5) )
& p__less__(Z_g,Z1_g) ) )
=> tp(V1_g) ) ) ).
tff(formula_2_right_0,conjecture,
! [V1_g: general] :
( ( ( ( V1_g = f__integer__(4) )
& $true )
=> hp(V1_g) )
& ( ( ( V1_g = f__integer__(4) )
& $true )
=> tp(V1_g) ) ) ).
%------------------------------------------------------------------------------