TPTP Problem File: SWW971^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW971^5 : TPTP v9.0.0. Released v8.1.0.
% Domain : Software Verification
% Problem : Conflict detection of 2 conceptual schemata (e.g. UML-schemata)
% Version : [BP13] axioms.
% English :
% Refs : [BE04] Boeva & Ekenberg (2004), A Transition Logic for Schema
% : [RO12] Raths & Otten (2012), The QMLTP Problem Library for Fi
% : [BP13] Benzmueller & Paulson (2013), Quantified Multimodal Lo
% : [Ste22] Steen (2022), An Extensible Logic Embedding Tool for L
% Source : [TPTP]
% Names : APM002+1 [QMLTP]
% Status : CounterSatisfiable
% Rating : 0.50 v9.0.0, 0.25 v8.2.0, 0.50 v8.1.0
% Syntax : Number of formulae : 34 ( 11 unt; 18 typ; 10 def)
% Number of atoms : 74 ( 10 equ; 0 cnn)
% Maximal formula atoms : 24 ( 4 avg)
% Number of connectives : 99 ( 1 ~; 1 |; 3 &; 90 @)
% ( 1 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 3 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 61 ( 61 >; 0 *; 0 +; 0 <<)
% Number of symbols : 19 ( 17 usr; 5 con; 0-3 aty)
% Number of variables : 33 ( 25 ^; 6 !; 2 ?; 33 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This output was generated by embedproblem, version 1.7.1 (library
% version 1.3). Generated on Thu Apr 28 13:18:18 EDT 2022 using
% 'modal' embedding, version 1.5.2. Logic specification used:
% $modal == [$constants == $rigid,$quantification == $constant,
% $modalities == $modal_system_S5].
%------------------------------------------------------------------------------
thf(mworld,type,
mworld: $tType ).
thf(mrel_type,type,
mrel: mworld > mworld > $o ).
thf(mactual_type,type,
mactual: mworld ).
thf(mlocal_type,type,
mlocal: ( mworld > $o ) > $o ).
thf(mlocal_def,definition,
( mlocal
= ( ^ [Phi: mworld > $o] : ( Phi @ mactual ) ) ) ).
thf(mnot_type,type,
mnot: ( mworld > $o ) > mworld > $o ).
thf(mand_type,type,
mand: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mor_type,type,
mor: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mimplies_type,type,
mimplies: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mequiv_type,type,
mequiv: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mnot_def,definition,
( mnot
= ( ^ [A: mworld > $o,W: mworld] :
~ ( A @ W ) ) ) ).
thf(mand_def,definition,
( mand
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
& ( B @ W ) ) ) ) ).
thf(mor_def,definition,
( mor
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
| ( B @ W ) ) ) ) ).
thf(mimplies_def,definition,
( mimplies
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
=> ( B @ W ) ) ) ) ).
thf(mequiv_def,definition,
( mequiv
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
<=> ( B @ W ) ) ) ) ).
thf(mbox_type,type,
mbox: ( mworld > $o ) > mworld > $o ).
thf(mbox_def,definition,
( mbox
= ( ^ [Phi: mworld > $o,W: mworld] :
! [V: mworld] :
( ( mrel @ W @ V )
=> ( Phi @ V ) ) ) ) ).
thf(mdia_type,type,
mdia: ( mworld > $o ) > mworld > $o ).
thf(mdia_def,definition,
( mdia
= ( ^ [Phi: mworld > $o,W: mworld] :
? [V: mworld] :
( ( mrel @ W @ V )
& ( Phi @ V ) ) ) ) ).
thf(mrel_reflexive,axiom,
! [W: mworld] : ( mrel @ W @ W ) ).
thf(mrel_euclidean,axiom,
! [W: mworld,V: mworld,U: mworld] :
( ( ( mrel @ W @ U )
& ( mrel @ W @ V ) )
=> ( mrel @ U @ V ) ) ).
thf(mforall_di_type,type,
mforall_di: ( $i > mworld > $o ) > mworld > $o ).
thf(mforall_di_def,definition,
( mforall_di
= ( ^ [A: $i > mworld > $o,W: mworld] :
! [X: $i] : ( A @ X @ W ) ) ) ).
thf(mexists_di_type,type,
mexists_di: ( $i > mworld > $o ) > mworld > $o ).
thf(mexists_di_def,definition,
( mexists_di
= ( ^ [A: $i > mworld > $o,W: mworld] :
? [X: $i] : ( A @ X @ W ) ) ) ).
thf(a_decl,type,
a: $i ).
thf(b_decl,type,
b: $i ).
thf(c_decl,type,
c: $i ).
thf(p_decl,type,
p: $i > mworld > $o ).
thf(r_decl,type,
r: $i > mworld > $o ).
thf(schema1,axiom,
mlocal @ ( mand @ ( mor @ ( mnot @ ( r @ a ) ) @ ( r @ b ) ) @ ( mand @ ( mequiv @ ( r @ c ) @ ( r @ a ) ) @ ( mand @ ( mimplies @ ( r @ a ) @ ( mdia @ ( r @ b ) ) ) @ ( mimplies @ ( mnot @ ( r @ a ) ) @ ( mdia @ ( mand @ ( mnot @ ( r @ b ) ) @ ( mnot @ ( r @ c ) ) ) ) ) ) ) ) ).
thf(schema2,axiom,
mlocal @ ( mand @ ( mimplies @ ( p @ a ) @ ( p @ b ) ) @ ( mand @ ( mor @ ( p @ c ) @ ( mnot @ ( p @ b ) ) ) @ ( mimplies @ ( mand @ ( p @ a ) @ ( p @ b ) ) @ ( mdia @ ( mnot @ ( p @ b ) ) ) ) ) ) ).
thf(integration_assertion,axiom,
( mlocal
@ ( mforall_di
@ ^ [X: $i] : ( mequiv @ ( p @ X ) @ ( r @ X ) ) ) ) ).
thf(con,conjecture,
( mlocal
@ ^ [W: mworld] : $false ) ).
%------------------------------------------------------------------------------