TPTP Problem File: SWW650_2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW650_2 : TPTP v9.0.0. Released v6.1.0.
% Domain : Software Verification
% Problem : Tortoise and hare-T-WP parameter tortoise hare
% Version : Especial : Let and conditional terms encoded away.
% English :
% Refs : [Fil14] Filliatre (2014), Email to Geoff Sutcliffe
% : [BF+] Bobot et al. (URL), Toccata: Certified Programs and Cert
% Source : [Fil14]
% Names : tortoise_and_hare-T-WP_parameter_tortoise_hare [Fil14]
% Status : Theorem
% Rating : 0.12 v8.2.0, 0.25 v7.5.0, 0.30 v7.4.0, 0.12 v7.3.0, 0.00 v7.0.0, 0.14 v6.4.0, 0.00 v6.3.0, 0.43 v6.2.0, 0.62 v6.1.0
% Syntax : Number of formulae : 51 ( 10 unt; 27 typ; 0 def)
% Number of atoms : 59 ( 23 equ)
% Maximal formula atoms : 7 ( 1 avg)
% Number of connectives : 39 ( 4 ~; 1 |; 13 &)
% ( 1 <=>; 20 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number arithmetic : 87 ( 27 atm; 20 fun; 24 num; 16 var)
% Number of types : 7 ( 5 usr; 1 ari)
% Number of type conns : 19 ( 10 >; 9 *; 0 +; 0 <<)
% Number of predicates : 5 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 26 ( 20 usr; 15 con; 0-4 aty)
% Number of variables : 43 ( 41 !; 2 ?; 43 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(uni,type,
uni: $tType ).
tff(ty,type,
ty: $tType ).
tff(sort,type,
sort1: ( ty * uni ) > $o ).
tff(witness,type,
witness1: ty > uni ).
tff(witness_sort1,axiom,
! [A: ty] : sort1(A,witness1(A)) ).
tff(int,type,
int: ty ).
tff(real,type,
real: ty ).
tff(bool,type,
bool1: $tType ).
tff(bool1,type,
bool: ty ).
tff(true,type,
true1: bool1 ).
tff(false,type,
false1: bool1 ).
tff(match_bool,type,
match_bool1: ( ty * bool1 * uni * uni ) > uni ).
tff(match_bool_sort2,axiom,
! [A: ty,X: bool1,X1: uni,X2: uni] : sort1(A,match_bool1(A,X,X1,X2)) ).
tff(match_bool_True,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort1(A,Z)
=> ( match_bool1(A,true1,Z,Z1) = Z ) ) ).
tff(match_bool_False,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort1(A,Z1)
=> ( match_bool1(A,false1,Z,Z1) = Z1 ) ) ).
tff(true_False,axiom,
true1 != false1 ).
tff(bool_inversion,axiom,
! [U: bool1] :
( ( U = true1 )
| ( U = false1 ) ) ).
tff(tuple0,type,
tuple02: $tType ).
tff(tuple01,type,
tuple0: ty ).
tff(tuple02,type,
tuple03: tuple02 ).
tff(tuple0_inversion,axiom,
! [U: tuple02] : ( U = tuple03 ) ).
tff(qtmark,type,
qtmark: ty ).
tff(compatOrderMult,axiom,
! [X: $int,Y: $int,Z: $int] :
( $lesseq(X,Y)
=> ( $lesseq(0,Z)
=> $lesseq($product(X,Z),$product(Y,Z)) ) ) ).
tff(t,type,
t1: $tType ).
tff(t1,type,
t: ty ).
tff(f,type,
f1: t1 > t1 ).
tff(x0,type,
x01: t1 ).
tff(iter,type,
iter1: ( $int * t1 ) > t1 ).
tff(iter_0,axiom,
! [X: t1] : ( iter1(0,X) = X ) ).
tff(iter_s,axiom,
! [K: $int,X: t1] :
( $less(0,K)
=> ( iter1(K,X) = iter1($difference(K,1),f1(X)) ) ) ).
tff(iter_1,axiom,
! [X: t1] : ( iter1(1,X) = f1(X) ) ).
tff(iter_s2,axiom,
! [K: $int,X: t1] :
( $less(0,K)
=> ( iter1(K,X) = f1(iter1($difference(K,1),X)) ) ) ).
tff(mu,type,
mu1: $int ).
tff(lambda,type,
lambda1: $int ).
tff(mu_range,axiom,
$lesseq(0,mu1) ).
tff(lambda_range,axiom,
$lesseq(1,lambda1) ).
tff(distinct,axiom,
! [I: $int,J: $int] :
( ( $lesseq(0,I)
& $less(I,$sum(mu1,lambda1)) )
=> ( ( $lesseq(0,J)
& $less(J,$sum(mu1,lambda1)) )
=> ( ( I != J )
=> ( iter1(I,x01) != iter1(J,x01) ) ) ) ) ).
tff(cycle,axiom,
! [N: $int] :
( $lesseq(mu1,N)
=> ( iter1($sum(N,lambda1),x01) = iter1(N,x01) ) ) ).
tff(cycle_induction,axiom,
! [N: $int] :
( $lesseq(mu1,N)
=> ! [K: $int] :
( $lesseq(0,K)
=> ( iter1($sum(N,$product(lambda1,K)),x01) = iter1(N,x01) ) ) ) ).
tff(ref,type,
ref: ty > ty ).
tff(mk_ref,type,
mk_ref: ( ty * uni ) > uni ).
tff(mk_ref_sort1,axiom,
! [A: ty,X: uni] : sort1(ref(A),mk_ref(A,X)) ).
tff(contents,type,
contents: ( ty * uni ) > uni ).
tff(contents_sort1,axiom,
! [A: ty,X: uni] : sort1(A,contents(A,X)) ).
tff(contents_def1,axiom,
! [A: ty,U: uni] :
( sort1(A,U)
=> ( contents(A,mk_ref(A,U)) = U ) ) ).
tff(ref_inversion1,axiom,
! [A: ty,U: uni] :
( sort1(ref(A),U)
=> ( U = mk_ref(A,contents(A,U)) ) ) ).
tff(dist,type,
dist1: ( $int * $int ) > $int ).
tff(dist_def,axiom,
! [I: $int,J: $int] :
( $lesseq(mu1,I)
=> ( $lesseq(mu1,J)
=> ( $lesseq(0,dist1(I,J))
& ( iter1($sum(I,dist1(I,J)),x01) = iter1(J,x01) )
& ! [K: $int] :
( $lesseq(0,K)
=> ( ( iter1($sum(I,K),x01) = iter1(J,x01) )
=> $lesseq(dist1(I,J),K) ) ) ) ) ) ).
tff(rel,type,
rel1: ( t1 * t1 ) > $o ).
tff(rel_def,axiom,
! [T2: t1,T1: t1] :
( rel1(T2,T1)
<=> ? [I: $int] :
( ( T1 = iter1(I,x01) )
& ( T2 = iter1($sum(I,1),x01) )
& $lesseq(1,I)
& $lesseq(I,$sum(mu1,lambda1))
& ( $lesseq(mu1,I)
=> $less(dist1($sum($product(2,I),2),$sum(I,1)),dist1($product(2,I),I)) ) ) ) ).
tff(wP_parameter_tortoise_hare,conjecture,
? [T: $int] :
( $lesseq(1,T)
& $lesseq(T,$sum(mu1,lambda1))
& ( f1(x01) = iter1(T,x01) )
& ( f1(f1(x01)) = iter1($product(2,T),x01) )
& ! [I: $int] :
( ( $lesseq(1,I)
& $less(I,T) )
=> ( iter1(I,x01) != iter1($product(2,I),x01) ) ) ) ).
%------------------------------------------------------------------------------