TPTP Problem File: SWW588_2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW588_2 : TPTP v9.0.0. Released v6.1.0.
% Domain : Software Verification
% Problem : Division-T-WP parameter division
% Version : Especial : Let and conditional terms encoded away.
% English :
% Refs : [Fil14] Filliatre (2014), Email to Geoff Sutcliffe
% : [BF+] Bobot et al. (URL), Toccata: Certified Programs and Cert
% Source : [Fil14]
% Names : division-T-WP_parameter_division [Fil14]
% Status : Theorem
% Rating : 0.12 v8.2.0, 0.25 v7.5.0, 0.30 v7.4.0, 0.25 v7.3.0, 0.17 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.57 v6.2.0, 0.62 v6.1.0
% Syntax : Number of formulae : 31 ( 6 unt; 18 typ; 0 def)
% Number of atoms : 36 ( 14 equ)
% Maximal formula atoms : 17 ( 1 avg)
% Number of connectives : 25 ( 2 ~; 1 |; 10 &)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 46 ( 14 atm; 12 fun; 10 num; 10 var)
% Number of types : 6 ( 4 usr; 1 ari)
% Number of type conns : 12 ( 6 >; 6 *; 0 +; 0 <<)
% Number of predicates : 4 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 18 ( 13 usr; 10 con; 0-4 aty)
% Number of variables : 31 ( 30 !; 1 ?; 31 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(uni,type,
uni: $tType ).
tff(ty,type,
ty: $tType ).
tff(sort,type,
sort1: ( ty * uni ) > $o ).
tff(witness,type,
witness1: ty > uni ).
tff(witness_sort1,axiom,
! [A: ty] : sort1(A,witness1(A)) ).
tff(int,type,
int: ty ).
tff(real,type,
real: ty ).
tff(bool,type,
bool1: $tType ).
tff(bool1,type,
bool: ty ).
tff(true,type,
true1: bool1 ).
tff(false,type,
false1: bool1 ).
tff(match_bool,type,
match_bool1: ( ty * bool1 * uni * uni ) > uni ).
tff(match_bool_sort1,axiom,
! [A: ty,X: bool1,X1: uni,X2: uni] : sort1(A,match_bool1(A,X,X1,X2)) ).
tff(match_bool_True,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort1(A,Z)
=> ( match_bool1(A,true1,Z,Z1) = Z ) ) ).
tff(match_bool_False,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort1(A,Z1)
=> ( match_bool1(A,false1,Z,Z1) = Z1 ) ) ).
tff(true_False,axiom,
true1 != false1 ).
tff(bool_inversion,axiom,
! [U: bool1] :
( ( U = true1 )
| ( U = false1 ) ) ).
tff(tuple0,type,
tuple02: $tType ).
tff(tuple01,type,
tuple0: ty ).
tff(tuple02,type,
tuple03: tuple02 ).
tff(tuple0_inversion,axiom,
! [U: tuple02] : ( U = tuple03 ) ).
tff(qtmark,type,
qtmark: ty ).
tff(compatOrderMult,axiom,
! [X: $int,Y: $int,Z: $int] :
( $lesseq(X,Y)
=> ( $lesseq(0,Z)
=> $lesseq($product(X,Z),$product(Y,Z)) ) ) ).
tff(ref,type,
ref: ty > ty ).
tff(mk_ref,type,
mk_ref: ( ty * uni ) > uni ).
tff(mk_ref_sort1,axiom,
! [A: ty,X: uni] : sort1(ref(A),mk_ref(A,X)) ).
tff(contents,type,
contents: ( ty * uni ) > uni ).
tff(contents_sort1,axiom,
! [A: ty,X: uni] : sort1(A,contents(A,X)) ).
tff(contents_def1,axiom,
! [A: ty,U: uni] :
( sort1(A,U)
=> ( contents(A,mk_ref(A,U)) = U ) ) ).
tff(ref_inversion1,axiom,
! [A: ty,U: uni] :
( sort1(ref(A),U)
=> ( U = mk_ref(A,contents(A,U)) ) ) ).
tff(wP_parameter_division,conjecture,
! [A: $int,B: $int] :
( ( $lesseq(0,A)
& $less(0,B) )
=> ( ( $sum($product(0,B),A) = A )
& $lesseq(0,A)
& ! [R: $int,Q: $int] :
( ( ( $sum($product(Q,B),R) = A )
& $lesseq(0,R) )
=> ( ( $lesseq(B,R)
=> ! [Q1: $int] :
( ( Q1 = $sum(Q,1) )
=> ! [R1: $int] :
( ( R1 = $difference(R,B) )
=> ( ( $sum($product(Q1,B),R1) = A )
& $lesseq(0,R1)
& $lesseq(0,R)
& $less(R1,R) ) ) ) )
& ( ~ $lesseq(B,R)
=> ? [R1: $int] :
( ( $sum($product(Q,B),R1) = A )
& $lesseq(0,R1)
& $less(R1,B) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------