TPTP Problem File: SWW579_2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW579_2 : TPTP v9.0.0. Released v6.1.0.
% Domain : Software Verification
% Problem : Binary sqrt-T-WP parameter sqrt
% Version : Especial : Let and conditional terms encoded away.
% English :
% Refs : [Fil14] Filliatre (2014), Email to Geoff Sutcliffe
% : [BF+] Bobot et al. (URL), Toccata: Certified Programs and Cert
% Source : [Fil14]
% Names : binary_sqrt-T-WP_parameter_sqrt [Fil14]
% Status : Theorem
% Rating : 0.25 v8.2.0, 0.38 v7.5.0, 0.40 v7.4.0, 0.50 v7.3.0, 0.33 v7.0.0, 0.57 v6.4.0, 1.00 v6.3.0, 0.86 v6.2.0, 0.75 v6.1.0
% Syntax : Number of formulae : 37 ( 4 unt; 17 typ; 0 def)
% Number of atoms : 49 ( 25 equ)
% Maximal formula atoms : 11 ( 1 avg)
% Number of connectives : 39 ( 10 ~; 3 |; 8 &)
% ( 0 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Maximal term depth : 4 ( 1 avg)
% Number arithmetic : 124 ( 20 atm; 47 fun; 22 num; 35 var)
% Number of types : 7 ( 4 usr; 2 ari)
% Number of type conns : 11 ( 5 >; 6 *; 0 +; 0 <<)
% Number of predicates : 4 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 22 ( 12 usr; 12 con; 0-4 aty)
% Number of variables : 48 ( 48 !; 0 ?; 48 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(uni,type,
uni: $tType ).
tff(ty,type,
ty: $tType ).
tff(sort,type,
sort: ( ty * uni ) > $o ).
tff(witness,type,
witness: ty > uni ).
tff(witness_sort,axiom,
! [A: ty] : sort(A,witness(A)) ).
tff(int,type,
int: ty ).
tff(real,type,
real: ty ).
tff(bool,type,
bool: $tType ).
tff(bool1,type,
bool1: ty ).
tff(true,type,
true: bool ).
tff(false,type,
false: bool ).
tff(match_bool,type,
match_bool: ( ty * bool * uni * uni ) > uni ).
tff(match_bool_sort,axiom,
! [A: ty,X: bool,X1: uni,X2: uni] : sort(A,match_bool(A,X,X1,X2)) ).
tff(match_bool_True,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort(A,Z)
=> ( match_bool(A,true,Z,Z1) = Z ) ) ).
tff(match_bool_False,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort(A,Z1)
=> ( match_bool(A,false,Z,Z1) = Z1 ) ) ).
tff(true_False,axiom,
true != false ).
tff(bool_inversion,axiom,
! [U: bool] :
( ( U = true )
| ( U = false ) ) ).
tff(tuple0,type,
tuple0: $tType ).
tff(tuple01,type,
tuple01: ty ).
tff(tuple02,type,
tuple02: tuple0 ).
tff(tuple0_inversion,axiom,
! [U: tuple0] : ( U = tuple02 ) ).
tff(qtmark,type,
qtmark: ty ).
tff(add_div,axiom,
! [X: $real,Y: $real,Z: $real] :
( ( Z != 0.0 )
=> ( $quotient($sum(X,Y),Z) = $sum($quotient(X,Z),$quotient(Y,Z)) ) ) ).
tff(sub_div,axiom,
! [X: $real,Y: $real,Z: $real] :
( ( Z != 0.0 )
=> ( $quotient($difference(X,Y),Z) = $difference($quotient(X,Z),$quotient(Y,Z)) ) ) ).
tff(neg_div,axiom,
! [X: $real,Y: $real] :
( ( Y != 0.0 )
=> ( $quotient($uminus(X),Y) = $uminus($quotient(X,Y)) ) ) ).
tff(assoc_mul_div,axiom,
! [X: $real,Y: $real,Z: $real] :
( ( Z != 0.0 )
=> ( $quotient($product(X,Y),Z) = $product(X,$quotient(Y,Z)) ) ) ).
tff(assoc_div_mul,axiom,
! [X: $real,Y: $real,Z: $real] :
( ( ( Y != 0.0 )
& ( Z != 0.0 ) )
=> ( $quotient($quotient(X,Y),Z) = $quotient(X,$product(Y,Z)) ) ) ).
tff(assoc_div_div,axiom,
! [X: $real,Y: $real,Z: $real] :
( ( ( Y != 0.0 )
& ( Z != 0.0 ) )
=> ( $quotient(X,$quotient(Y,Z)) = $quotient($product(X,Z),Y) ) ) ).
tff(compatOrderMult,axiom,
! [X: $real,Y: $real,Z: $real] :
( $lesseq(X,Y)
=> ( $lesseq(0.0,Z)
=> $lesseq($product(X,Z),$product(Y,Z)) ) ) ).
tff(compatOrderMult1,axiom,
! [X: $int,Y: $int,Z: $int] :
( $lesseq(X,Y)
=> ( $lesseq(0,Z)
=> $lesseq($product(X,Z),$product(Y,Z)) ) ) ).
tff(min,type,
min: ( $real * $real ) > $real ).
tff(max,type,
max: ( $real * $real ) > $real ).
tff(max_is_ge,axiom,
! [X: $real,Y: $real] :
( $lesseq(X,max(X,Y))
& $lesseq(Y,max(X,Y)) ) ).
tff(max_is_some,axiom,
! [X: $real,Y: $real] :
( ( max(X,Y) = X )
| ( max(X,Y) = Y ) ) ).
tff(min_is_le,axiom,
! [X: $real,Y: $real] :
( $lesseq(min(X,Y),X)
& $lesseq(min(X,Y),Y) ) ).
tff(min_is_some,axiom,
! [X: $real,Y: $real] :
( ( min(X,Y) = X )
| ( min(X,Y) = Y ) ) ).
tff(wP_parameter_sqrt,conjecture,
! [R: $real,Eps: $real,N: $int,Eps0: $real] :
( ( $lesseq(0.0,R)
& $less(0.0,Eps0)
& $lesseq(1,N)
& ( Eps = $product($to_real(N),Eps0) ) )
=> ( ~ ( $less(R,Eps)
& $less(1.0,Eps) )
=> ( $lesseq($product($to_real(N),Eps0),max(R,1.0))
=> ( $less(0.0,$quotient(1.0,Eps0))
=> ( $lesseq($product($product($to_real(N),Eps0),$quotient(1.0,Eps0)),$product(max(R,1.0),$quotient(1.0,Eps0)))
=> ( $lesseq($quotient($product($to_real(N),Eps0),Eps0),$quotient(max(R,1.0),Eps0))
=> $lesseq($to_real(N),$quotient(max(R,1.0),Eps0)) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------