TPTP Problem File: SWW450-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW450-1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Software Verification
% Problem : Randomly generated entailment of the form F -> G (n = 11)
% Version : Especial.
% English : A randomly generated entailment with n program variables.
% A random graph with pointers and list segments is generated,
% and then some of the segments are folded. The task is to
% prove whether the unfolded version entails the folded one.
% Parameters are chosen so that about half of the generated
% entailments are valid.
% These entailments stress the role of unfolding axioms.
% Refs : [RN11] Rybalchenko & Navarro Perez (2011), Separation Logic +
% : [Nav11] Navarro Perez (2011), Email to Geoff Sutcliffe
% Source : [Nav11]
% Names : bolognesa-11-e02 [Nav11]
% Status : Unsatisfiable
% Rating : 1.00 v5.2.0
% Syntax : Number of clauses : 13 ( 6 unt; 3 nHn; 11 RR)
% Number of literals : 23 ( 8 equ; 10 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 13 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 16 ( 16 usr; 13 con; 0-2 aty)
% Number of variables : 38 ( 9 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Lists in Separation Logic
include('Axioms/SWV013-0.ax').
%------------------------------------------------------------------------------
cnf(premise_1,hypothesis,
heap(sep(next(x7,x1),sep(next(x11,x7),sep(next(x9,x8),sep(lseg(x4,x9),sep(next(x8,x5),sep(next(x1,x4),sep(lseg(x10,x2),sep(next(x5,x6),sep(lseg(x3,x2),sep(next(x6,x5),sep(next(x2,x6),emp)))))))))))) ).
cnf(conclusion_1,negated_conjecture,
~ heap(sep(lseg(x11,x7),sep(lseg(x7,x9),sep(lseg(x9,x5),sep(lseg(x3,x2),sep(lseg(x5,x6),sep(lseg(x10,x5),emp))))))) ).
%------------------------------------------------------------------------------