TPTP Problem File: SWW442-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW442-1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Software Verification
% Problem : Randomly generated entailment of the form F -> \bot (n = 18)
% Version : Especial.
% English : A randomly generated entailment with n program variables.
% Negated equalities and list segments are added at random, with
% specific paramenters so that about half of the generated
% entailments are valid (or, equivalently, F is unsatisfiable).
% Normalization and well-formedness axioms should be enough to
% decide these entailments.
% Refs : [RN11] Rybalchenko & Navarro Perez (2011), Separation Logic +
% : [Nav11] Navarro Perez (2011), Email to Geoff Sutcliffe
% Source : [Nav11]
% Names : spaguetti-18-e02 [Nav11]
% Status : Unsatisfiable
% Rating : 0.55 v8.2.0, 0.62 v8.1.0, 0.53 v7.5.0, 0.63 v7.4.0, 0.59 v7.3.0, 0.50 v7.1.0, 0.42 v7.0.0, 0.60 v6.3.0, 0.64 v6.2.0, 0.50 v6.1.0, 0.79 v6.0.0, 0.80 v5.5.0, 0.95 v5.3.0, 0.94 v5.2.0
% Syntax : Number of clauses : 41 ( 33 unt; 3 nHn; 39 RR)
% Number of literals : 52 ( 37 equ; 38 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 20 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 23 ( 23 usr; 20 con; 0-2 aty)
% Number of variables : 38 ( 9 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Lists in Separation Logic
include('Axioms/SWV013-0.ax').
%------------------------------------------------------------------------------
cnf(premise_1,hypothesis,
x6 != x13 ).
cnf(premise_2,hypothesis,
x6 != x16 ).
cnf(premise_3,hypothesis,
x11 != x18 ).
cnf(premise_4,hypothesis,
x11 != x17 ).
cnf(premise_5,hypothesis,
x3 != x16 ).
cnf(premise_6,hypothesis,
x3 != x12 ).
cnf(premise_7,hypothesis,
x3 != x17 ).
cnf(premise_8,hypothesis,
x7 != x13 ).
cnf(premise_9,hypothesis,
x7 != x14 ).
cnf(premise_10,hypothesis,
x7 != x15 ).
cnf(premise_11,hypothesis,
x9 != x13 ).
cnf(premise_12,hypothesis,
x9 != x17 ).
cnf(premise_13,hypothesis,
x2 != x8 ).
cnf(premise_14,hypothesis,
x2 != x6 ).
cnf(premise_15,hypothesis,
x2 != x11 ).
cnf(premise_16,hypothesis,
x2 != x17 ).
cnf(premise_17,hypothesis,
x12 != x14 ).
cnf(premise_18,hypothesis,
x8 != x14 ).
cnf(premise_19,hypothesis,
x1 != x10 ).
cnf(premise_20,hypothesis,
x1 != x15 ).
cnf(premise_21,hypothesis,
x4 != x11 ).
cnf(premise_22,hypothesis,
x4 != x9 ).
cnf(premise_23,hypothesis,
x4 != x13 ).
cnf(premise_24,hypothesis,
x13 != x18 ).
cnf(premise_25,hypothesis,
x10 != x11 ).
cnf(premise_26,hypothesis,
x10 != x12 ).
cnf(premise_27,hypothesis,
x5 != x6 ).
cnf(premise_28,hypothesis,
x5 != x16 ).
cnf(premise_29,hypothesis,
heap(sep(lseg(x5,x14),sep(lseg(x13,x15),sep(lseg(x13,x12),sep(lseg(x13,x2),sep(lseg(x10,x11),sep(lseg(x18,x10),sep(lseg(x18,x11),sep(lseg(x1,x5),sep(lseg(x4,x15),sep(lseg(x4,x11),sep(lseg(x15,x16),sep(lseg(x17,x10),sep(lseg(x2,x16),sep(lseg(x2,x6),sep(lseg(x9,x15),sep(lseg(x7,x12),sep(lseg(x7,x13),sep(lseg(x11,x9),emp))))))))))))))))))) ).
cnf(conclusion_1,negated_conjecture,
( x1 = x1
| ~ heap(emp) ) ).
%------------------------------------------------------------------------------