TPTP Problem File: SWW441-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW441-1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Software Verification
% Problem : Randomly generated entailment of the form F -> \bot (n = 18)
% Version : Especial.
% English : A randomly generated entailment with n program variables.
% Negated equalities and list segments are added at random, with
% specific paramenters so that about half of the generated
% entailments are valid (or, equivalently, F is unsatisfiable).
% Normalization and well-formedness axioms should be enough to
% decide these entailments.
% Refs : [RN11] Rybalchenko & Navarro Perez (2011), Separation Logic +
% : [Nav11] Navarro Perez (2011), Email to Geoff Sutcliffe
% Source : [Nav11]
% Names : spaguetti-18-e01 [Nav11]
% Status : Satisfiable
% Rating : 1.00 v5.2.0
% Syntax : Number of clauses : 56 ( 48 unt; 3 nHn; 54 RR)
% Number of literals : 67 ( 52 equ; 53 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 13 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 23 ( 23 usr; 20 con; 0-2 aty)
% Number of variables : 38 ( 9 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Lists in Separation Logic
include('Axioms/SWV013-0.ax').
%------------------------------------------------------------------------------
cnf(premise_1,hypothesis,
x6 != x8 ).
cnf(premise_2,hypothesis,
x6 != x9 ).
cnf(premise_3,hypothesis,
x6 != x13 ).
cnf(premise_4,hypothesis,
x6 != x17 ).
cnf(premise_5,hypothesis,
x6 != x12 ).
cnf(premise_6,hypothesis,
x3 != x6 ).
cnf(premise_7,hypothesis,
x3 != x4 ).
cnf(premise_8,hypothesis,
x3 != x18 ).
cnf(premise_9,hypothesis,
x3 != x13 ).
cnf(premise_10,hypothesis,
x3 != x17 ).
cnf(premise_11,hypothesis,
x3 != x5 ).
cnf(premise_12,hypothesis,
x3 != x15 ).
cnf(premise_13,hypothesis,
x7 != x11 ).
cnf(premise_14,hypothesis,
x7 != x16 ).
cnf(premise_15,hypothesis,
x7 != x15 ).
cnf(premise_16,hypothesis,
x9 != x16 ).
cnf(premise_17,hypothesis,
x17 != x18 ).
cnf(premise_18,hypothesis,
x2 != x8 ).
cnf(premise_19,hypothesis,
x2 != x11 ).
cnf(premise_20,hypothesis,
x2 != x18 ).
cnf(premise_21,hypothesis,
x2 != x3 ).
cnf(premise_22,hypothesis,
x2 != x10 ).
cnf(premise_23,hypothesis,
x2 != x16 ).
cnf(premise_24,hypothesis,
x2 != x5 ).
cnf(premise_25,hypothesis,
x12 != x13 ).
cnf(premise_26,hypothesis,
x15 != x16 ).
cnf(premise_27,hypothesis,
x8 != x11 ).
cnf(premise_28,hypothesis,
x8 != x10 ).
cnf(premise_29,hypothesis,
x8 != x15 ).
cnf(premise_30,hypothesis,
x4 != x18 ).
cnf(premise_31,hypothesis,
x4 != x9 ).
cnf(premise_32,hypothesis,
x4 != x14 ).
cnf(premise_33,hypothesis,
x4 != x15 ).
cnf(premise_34,hypothesis,
x1 != x8 ).
cnf(premise_35,hypothesis,
x1 != x11 ).
cnf(premise_36,hypothesis,
x1 != x18 ).
cnf(premise_37,hypothesis,
x1 != x15 ).
cnf(premise_38,hypothesis,
x1 != x5 ).
cnf(premise_39,hypothesis,
x10 != x18 ).
cnf(premise_40,hypothesis,
x10 != x15 ).
cnf(premise_41,hypothesis,
x16 != x17 ).
cnf(premise_42,hypothesis,
x5 != x6 ).
cnf(premise_43,hypothesis,
x5 != x16 ).
cnf(premise_44,hypothesis,
heap(sep(lseg(x5,x1),sep(lseg(x10,x13),sep(lseg(x10,x18),sep(lseg(x18,x1),sep(lseg(x15,x11),sep(lseg(x14,x17),sep(lseg(x12,x18),sep(lseg(x9,x12),sep(lseg(x7,x14),sep(lseg(x7,x12),sep(lseg(x6,x9),emp)))))))))))) ).
cnf(conclusion_1,negated_conjecture,
( x1 = x1
| ~ heap(emp) ) ).
%------------------------------------------------------------------------------