TPTP Problem File: SWW429-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW429-1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Software Verification
% Problem : Randomly generated entailment of the form F -> \bot (n = 12)
% Version : Especial.
% English : A randomly generated entailment with n program variables.
% Negated equalities and list segments are added at random, with
% specific paramenters so that about half of the generated
% entailments are valid (or, equivalently, F is unsatisfiable).
% Normalization and well-formedness axioms should be enough to
% decide these entailments.
% Refs : [RN11] Rybalchenko & Navarro Perez (2011), Separation Logic +
% : [Nav11] Navarro Perez (2011), Email to Geoff Sutcliffe
% Source : [Nav11]
% Names : spaguetti-12-e01 [Nav11]
% Status : Unsatisfiable
% Rating : 0.40 v8.2.0, 0.48 v8.1.0, 0.47 v7.5.0, 0.53 v7.3.0, 0.42 v7.1.0, 0.33 v7.0.0, 0.60 v6.3.0, 0.55 v6.2.0, 0.70 v6.1.0, 0.71 v6.0.0, 0.80 v5.5.0, 0.95 v5.4.0, 0.90 v5.3.0, 0.89 v5.2.0
% Syntax : Number of clauses : 18 ( 10 unt; 3 nHn; 16 RR)
% Number of literals : 29 ( 14 equ; 15 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 13 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 17 ( 17 usr; 14 con; 0-2 aty)
% Number of variables : 38 ( 9 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Lists in Separation Logic
include('Axioms/SWV013-0.ax').
%------------------------------------------------------------------------------
cnf(premise_1,hypothesis,
x4 != x7 ).
cnf(premise_2,hypothesis,
x4 != x10 ).
cnf(premise_3,hypothesis,
x3 != x8 ).
cnf(premise_4,hypothesis,
x2 != x9 ).
cnf(premise_5,hypothesis,
x5 != x9 ).
cnf(premise_6,hypothesis,
heap(sep(lseg(x5,x1),sep(lseg(x7,x12),sep(lseg(x7,x8),sep(lseg(x3,x5),sep(lseg(x3,x12),sep(lseg(x4,x12),sep(lseg(x4,x7),sep(lseg(x1,x6),sep(lseg(x6,x9),sep(lseg(x6,x7),sep(lseg(x8,x11),emp)))))))))))) ).
cnf(conclusion_1,negated_conjecture,
( x1 = x1
| ~ heap(emp) ) ).
%------------------------------------------------------------------------------